Hypertrophic cardiomyopathy-induced paracrine signaling and stromal activation
肥厚型心肌病诱导的旁分泌信号传导和基质激活
基本信息
- 批准号:10444910
- 负责人:
- 金额:$ 4.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnabolismAscorbic AcidAttenuatedBiological AssayBiologyBiomedical EngineeringBone MarrowCRISPR/Cas technologyCardiacCardiac MyocytesCardiovascular systemCellsClinicalCoculture TechniquesCollagenDataDepositionDevelopmentDiseaseExperimental ModelsExtracellular MatrixFibrosisFoundationsFunctional disorderGene ExpressionGeneticGoalsHeart DiseasesHumanHypertrophic CardiomyopathyIn VitroInflammatoryInheritedLeadLeftModelingMusMutationMyocardiumMyosin Heavy ChainsOutcomeParacrine CommunicationPathogenicityPathologicPathologyPathway interactionsPatient-Focused OutcomesPatientsPersonsPhenotypePlasmaPopulationProductionProteinsResearch PersonnelSamplingSignal PathwaySignal TransductionStromal CellsTechnologyTestingTissuesTransforming Growth Factor betaUp-RegulationVariantVentricularattenuationcytokineexperimental studyhuman modelimprovedin vitro Modelinduced pluripotent stem cellinsightmutantnon-muscle myosin heavy chain-Bparacrinephosphoproteomicsreceptorrelease factorresponsesenescencesingle-cell RNA sequencingsmall molecule inhibitorspecies differencesudden cardiac deaththerapeutic developmenttherapeutic targetthree-dimensional modelingtooltranscriptome sequencing
项目摘要
PROJECT SUMMARY/ABSTRACT
Hypertrophic cardiomyopathy (HCM) affects 1:500 of the population and is the leading cause of sudden cardiac
death in young people. Clinical presentation of HCM includes thickening of the left ventricular wall, diastolic
dysfunction, and fibrosis. Tissue remodeling from fibrosis replaces 30 to 50% of the myocardium in end-stage
HCM and is a key determinant in patient outcome. Mutations in numerous sarcomeric proteins that regulate
cardiac contractility have been identified as causes of HCM, about 30% of which are in located β-myosin heavy
chain (MYH7), but it remains unclear how the intrinsic changes in contractility of cardiomyocytes lead to fibrotic
remodeling. While previous studies have provided important insight into fibrosis, limitations in experimental
models, such as limited patient samples, limited ability to study human cardiomyocytes ex vivo, and species
variances in cardiovascular biology, have made it difficult to determine a mechanism of fibrosis preceding stromal
activation. Advancements in human induced pluripotent stem cell (hiPSC) and CRISPR/Cas9 technology have
allowed investigators to model and study inherited cardiac diseases compared to a healthy isogenic background
in vitro. While hiPSC-CMs have provided important insight into functional changes in diseased cardiomyocytes,
a multicellular 3D model is needed to study the pathological remodeling in fibrosis. Cardiac microtissue (CMT)
platforms offer a unique tool to study the effects of cardiomyocytes on stromal cells and the microenvironment.
The overall hypothesis of this proposal is that MYH7-variant hiPSC-CMs pathogenically activate stromal
cells through paracrine signaling, leading to a fibrotic phenotype. This proposal will determine targets to
attenuate a fibrotic phenotype in the following Specific Aims. Aim 1. To model stromal activation in MYH7-variant
hiPSC-CM in vitro models of HCM. Aim 2. To determine key paracrine factor signaling from pathogenic MYH7
variants that leads to a fibrotic response in stromal cells. Aim 3. To target paracrine factor receptors in stromal
cells to decrease fibrotic development in MYH7-variant CMTs. The in vitro model of stromal activation will be
characterized and validated with the quantification of collagen deposition, stiffness, gene expression, and
contractility. The paracrine signaling from MYH7-variant hiPSC-CM leading to these changes will be identified
using a combination of conditioned media experiments, phosphoproteomics, and RNA-sequencing. Key
signaling pathways will be targeted with small-molecule inhibitors, and the attenuation of stromal activation will
be confirmed through the quantification of collagen deposition, stiffness, gene expression, and contractility. The
results of this study will provide new insights into the disease pathology of HCM and will provide potential
therapeutic targets to attenuate this pathology, and thus improve clinical outcomes.
项目总结/摘要
肥厚型心肌病(HCM)影响1:500的人口,是心脏病突发的主要原因。
年轻人死亡率HCM的临床表现包括左室壁增厚、舒张功能不全、心功能不全、心功能不全和心功能不全。
功能障碍和纤维化。纤维化导致的组织重塑在终末期取代了30 - 50%的心肌
HCM是患者预后的关键决定因素。许多肌节蛋白的突变,
心肌收缩力已被确定为HCM的原因,其中约30%位于β-肌球蛋白重
链(MYH 7),但仍不清楚心肌细胞收缩力的内在变化如何导致纤维化。
重塑虽然先前的研究已经提供了对纤维化的重要见解,但实验研究的局限性仍然存在。
模型,例如有限的患者样本,离体研究人类心肌细胞的能力有限,以及物种
心血管生物学的变化,使得难以确定间质纤维化之前的机制,
activation.人类诱导性多能干细胞(hiPSC)和CRISPR/Cas9技术的进展
允许研究人员建模和研究遗传性心脏病,与健康的同基因背景相比,
体外虽然hiPSC-CM为患病心肌细胞的功能变化提供了重要的见解,
需要多细胞3D模型来研究纤维化中的病理重塑。心脏微组织(CMT)
平台提供了一种独特的工具来研究心肌细胞对基质细胞和微环境的影响。
该提议的总体假设是MYH 7变体hiPSC-CM致病性地激活基质细胞,
细胞通过旁分泌信号传导,导致纤维化表型。该提案将确定目标,
在以下具体目的中减弱纤维化表型。目标1。为了模拟MYH 7变体中的基质活化,
HCM的hiPSC-CM体外模型。目标二。确定致病性MYH 7的关键旁分泌因子信号传导
导致基质细胞纤维化反应的变异。目标3。靶向间质中的旁分泌因子受体,
细胞以减少MYH 7变体CMT中的纤维化发展。基质活化的体外模型将是
通过定量胶原沉积、硬度、基因表达和
收缩性将鉴定来自MYH 7变体hiPSC-CM的导致这些变化的旁分泌信号传导
使用条件培养基实验、磷酸化蛋白质组学和RNA测序的组合。关键
信号通路将被小分子抑制剂靶向,基质激活的减弱将
通过量化胶原沉积、硬度、基因表达和收缩性来证实。的
这项研究的结果将为HCM的疾病病理学提供新的见解,
治疗靶点,以减轻这种病理,从而改善临床结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jourdan Ewoldt其他文献
Jourdan Ewoldt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jourdan Ewoldt', 18)}}的其他基金
Hypertrophic cardiomyopathy-induced paracrine signaling and stromal activation
肥厚型心肌病诱导的旁分泌信号传导和基质激活
- 批准号:
10622564 - 财政年份:2021
- 资助金额:
$ 4.68万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 4.68万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 4.68万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 4.68万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 4.68万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 4.68万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 4.68万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 4.68万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 4.68万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 4.68万 - 项目类别:
Discovery Early Career Researcher Award