Molecular control of a novel transitional cell state in alveolar regeneration
肺泡再生中新型过渡细胞状态的分子控制
基本信息
- 批准号:10444905
- 负责人:
- 金额:$ 49.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AblationAddressAlveolarAlveolusAutomobile DrivingBiological AssayCell AdhesionCell Cycle ArrestCell Cycle RegulationCell Differentiation processCell surfaceCellsCessation of lifeCharacteristicsChronic Obstructive Pulmonary DiseaseChronic stressClinicalDNA DamageDNA RepairDNA Sequence AlterationDataDefectDevelopmentDiseaseEngraftmentEnvironmental Risk FactorEpithelialEpithelial CellsFibrosisFoundationsFutureGenesGeneticGenetic TranscriptionGoalsHumanInflammationInjuryLeadLung diseasesMaintenanceMediatingModelingMolecularMultiple TraumaMutationNatural regenerationOrganoidsOutcomePathogenesisPathway AnalysisPathway interactionsPatternPharmacologyProcessPulmonary EmphysemaPulmonary FibrosisReporterRespiratory DiseaseRoleSOX4 geneShapesSignal PathwaySignal TransductionSpecimenStretchingStructureTP53 geneTestingTherapeuticThinnessTissuesTransforming Growth Factor betaTransgenic OrganismsTransitional CellUnited StatesWorkalveolar epitheliumalveolar homeostasisbaseclinically relevantepithelial stem cellgain of functiongenome wide association studyin vivoloss of functionlung injurymouse modelnotch proteinnovelnovel therapeuticsprogenitorprogramsprospectiverepairedresponseself-renewalstem cellstooltranscription factortranscriptomics
项目摘要
SUMMARY
Alveolar injury and ineffective repair have been hypothesized to underlie the pathogenesis of chronic obstructive
pulmonary disease and pulmonary fibrosis. While genome-wide association studies and clinical specimens have
suggested a role for chronic stress, inflammation and DNA damage signaling, the underlying mechanisms and
the cell states in which the above pathways are dysregulated during alveolar regeneration remain elusive.
In our recent studies, using organoids, single cell transcriptomics and in vivo lung injury models, we uncovered
a previously uncharacterized, transient, pre-AEC1 transitional cell state (PATS), traversing between AEC2 and
AEC1 in alveolar regeneration. Interestingly, pathway analysis for genes expressed in PATS showed a significant
enrichment for targets of transcription factors TP53 and SOX4, and DNA damage repair pathway. We also found
that this cell state is vulnerable to stretch mediated DNA damage during differentiation of cuboidal AEC2 into
extremely flat and thin AEC1. Conditional ablation of Tp53 and Sox4 in AEC2s revealed a dramatic decrease in
the number of AEC1, and a significant increase in the number of PATS. These data suggest an essential role
for transcription factors TP53 and SOX4 in regulating AEC2 to AEC1 differentiation via pre-AEC1 transitional
state and the DNA damage repair during alveolar regeneration. Based on our preliminary data, we hypothesize
that the AEC2 progenitors go through a novel and molecularly distinct pre-AEC1 transitional state to
differentiate into AEC1. We also hypothesize that TP53 and SOX4 -mediated mechanisms are essential
for the cell cycle arrest, cell adhesion, cell stretching, and DNA damage repair pathway during
differentiation of AEC2 to AEC1.
The major objectives of this proposal are to molecularly and functionally characterize the newly identified pre-
AEC1 transitional state and to study the mechanisms governing this cell state in alveolar regeneration. In Aim1,
we will study the molecular identity, the temporal dynamics and the plasticity of a novel pre-AEC1 transitional
state in alveolar regeneration. In Aim2, we will test the hypothesis that TP53 and SOX4 mediated mechanisms
control cell cycle regulation, cell adhesion, and DNA damage repair pathways in pre-AEC1 transitional state
during AEC2 differentiation into AEC1. We will use organoid models, in vivo genetic and pharmacological loss-
of-function models, and molecular assays to study these specific aims. This work has taken on added
importance, as recent genome-wide association studies revealed mutations in the components of the DNA
damage repair signaling as one of the major drivers for emphysema and pulmonary fibrosis. Therefore, our
finding that stretch associated DNA damage in the pre-AEC1 transitional state makes it potentially vulnerable to
lung diseases. Thus, the outcomes from the proposed studies will have broader significance and will lay the
foundation for future studies involving human alveolar regeneration and diseases.
总结
肺泡损伤和无效修复被认为是慢性阻塞性肺疾病发病机制的基础。
肺疾病和肺纤维化。虽然全基因组关联研究和临床标本
提示慢性应激、炎症和DNA损伤信号的作用,潜在的机制和
在肺泡再生过程中上述途径失调的细胞状态仍然难以捉摸。
在我们最近的研究中,使用类器官,单细胞转录组学和体内肺损伤模型,我们发现
先前未表征的、短暂的、前AEC 1过渡细胞状态(PATS),在AEC 2和AEC 2之间穿越,
AEC 1在肺泡再生中的作用有趣的是,对PATS中表达的基因的途径分析显示,
富集转录因子TP 53和SOX 4的靶点,以及DNA损伤修复途径。我们还发现
这种细胞状态在立方状AEC 2分化为
非常平坦和薄的AEC 1。在AEC 2中条件性消融Tp 53和Sox 4显示,
AEC 1的数量,以及PATS数量的大幅增加。这些数据表明了一个重要的作用
转录因子TP 53和SOX 4通过AEC 1前过渡期调节AEC 2向AEC 1分化
状态和DNA损伤修复。根据我们的初步数据,我们假设
AEC 2祖细胞通过一种新的和分子上不同的前AEC 1过渡状态,
区分为AEC 1。我们还假设TP 53和SOX 4介导的机制是必不可少的,
细胞周期停滞,细胞粘附,细胞拉伸和DNA损伤修复途径,
AEC 2与AEC 1的区别
该提案的主要目标是从分子和功能上表征新发现的前-
AEC 1过渡状态,并研究其在肺泡再生中的作用机制。在目标1中,
我们将研究新型AEC 1前过渡态的分子身份、时间动力学和可塑性
肺泡再生的状态。在Aim 2中,我们将检验TP 53和SOX 4介导的机制的假设。
在前AEC 1过渡状态下控制细胞周期调节、细胞粘附和DNA损伤修复途径
在AEC 2分化成AEC 1期间。我们将使用类器官模型,体内遗传和药理学损失-
功能模型和分子测定来研究这些特定目的。这项工作已经采取了额外的
重要性,因为最近的全基因组关联研究揭示了DNA组分的突变,
损伤修复信号传导是肺气肿和肺纤维化的主要驱动因素之一。所以我们的
发现在前AEC 1过渡状态中与拉伸相关的DNA损伤使其可能容易受到
肺部疾病因此,拟议研究的结果将具有更广泛的意义,并将奠定
为将来研究人类肺泡再生和疾病奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Purushothama Rao Tata其他文献
Purushothama Rao Tata的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Purushothama Rao Tata', 18)}}的其他基金
Cellular crosstalk and molecular mechanisms in the initiation and progression of pulmonary fibrosis
肺纤维化发生和进展的细胞串扰和分子机制
- 批准号:
10517432 - 财政年份:2022
- 资助金额:
$ 49.73万 - 项目类别:
Cellular crosstalk and molecular mechanisms in the initiation and progression of pulmonary fibrosis
肺纤维化发生和进展的细胞串扰和分子机制
- 批准号:
10642934 - 财政年份:2022
- 资助金额:
$ 49.73万 - 项目类别:
Molecular control of a novel transitional cell state in alveolar regeneration
肺泡再生中新型过渡细胞状态的分子控制
- 批准号:
10204108 - 财政年份:2020
- 资助金额:
$ 49.73万 - 项目类别:
Molecular control of a novel transitional cell state in alveolar regeneration
肺泡再生中新型过渡细胞状态的分子控制
- 批准号:
10030517 - 财政年份:2020
- 资助金额:
$ 49.73万 - 项目类别:
Molecular control of a novel transitional cell state in alveolar regeneration
肺泡再生中新型过渡细胞状态的分子控制
- 批准号:
10656356 - 财政年份:2020
- 资助金额:
$ 49.73万 - 项目类别:
Mechanisms of submucosal gland cell mediated airway regeneration
粘膜下腺细胞介导气道再生的机制
- 批准号:
10444912 - 财政年份:2019
- 资助金额:
$ 49.73万 - 项目类别:
Mechanisms of submucosal gland cell mediated airway regeneration
粘膜下腺细胞介导气道再生的机制
- 批准号:
10656325 - 财政年份:2019
- 资助金额:
$ 49.73万 - 项目类别:
Mechanisms of submucosal gland cell mediated airway regeneration
粘膜下腺细胞介导气道再生的机制
- 批准号:
10210296 - 财政年份:2019
- 资助金额:
$ 49.73万 - 项目类别:
Image-Seq: A high-density microfluidic trap array for single cell transcriptome analysis coupled with image based phenotyping
图像序列:用于单细胞转录组分析的高密度微流体陷阱阵列以及基于图像的表型分析
- 批准号:
9789363 - 财政年份:2018
- 资助金额:
$ 49.73万 - 项目类别:
To define the role of SOX9 and Sox9+ cells in alveolar homeostasis and regeneration
定义 SOX9 和 Sox9 细胞在肺泡稳态和再生中的作用
- 批准号:
9377766 - 财政年份:2017
- 资助金额:
$ 49.73万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 49.73万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 49.73万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 49.73万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 49.73万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 49.73万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 49.73万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 49.73万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 49.73万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 49.73万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 49.73万 - 项目类别:
Research Grant