A first in human clinical study of TT101, a synthetic immunomodulatory material to build new functional tissue over exposed bone as a one time treatment for diabetic limb preservation patients

TT101 是一种合成免疫调节材料,可在暴露的骨骼上构建新的功能组织,作为糖尿病肢体保留患者的一次性治疗,这是首次进行人体临床研究

基本信息

  • 批准号:
    10326178
  • 负责人:
  • 金额:
    $ 136.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-15 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

SUMMARY / ABSTRACT According to the United States Centers for Disease Control, 34 million Americans have diabetes. One of the most prevalent complications of diabetes is the diabetic foot ulcer (DFU). Approximately 25% of diabetics will develop a non-healing foot ulcer in their lifetime. DFUs are highly susceptible to infection and tissue necrosis that require extreme surgical interventions to remove extensive dead tissue and preserve the limb. Unfortunately, tissue damage is often so extensive that these surgical procedures leave behind complex wounds with exposed bone, tendon, and or fascia – which are notoriously difficult to heal and where current bioengineered skin products do not have benefit. Indeed, foot ulceration is the most common single precursor of lower extremity amputations among persons with diabetes and is a precursor to approximately 85% of the lower extremity amputations within this population – exceeding 100K every year in the US alone. Furthermore, reported mortality rates for DFU patients range from 55 to 74% after 5 years, which are above cancers such as prostate, breast, and colon. The current treatment options for complex wounds are scarce. Bioengineered skin sheets are unable to build new tissue over these exposed bone surfaces, and basic wound care has little effect as well. Negative Pressure Wound Therapy (NPWT) has shown improved healing, but this management tool requires intensive outpatient care and is cumbersome. There is a clear need for a regenerative therapy that can have effect in the ‘vertical’ phase of wound healing, where building new tissue volume is paramount to success. This significant clinical need creates a considerable market opportunity. To answer this market need, Tempo Therapeutics has developed the MAP Wound Matrix – a flowable synthetic tissue scaffold based on our proprietary Microporous Annealed Particle (MAP) technology. MAP Wound Matrix is flowable (ease of application) and fills wounds of any shapes and sizes, and then converts to a hyper-porous sponge-like network in the wound site after exposure to white light. The hyper-porosity geometry promotes fast granulation tissue, and early vascularization, when compared to leading decellularized tissue-based matrices, with minimal inflammatory response in multiple animal models including diabetic pigs. Unlike most of these matrices, MAP does not require multiple applications. Tempo has already completed the necessary studies to support clinical trial application to FDA with safety and performance data and has completed initial scale-up of product manufacturing. In the proposed Direct-to-Phase II work, we will pursue the development of MAP Wound Matrix and conduct a multicenter, randomized pilot clinical study to evaluate its efficacy and safety to treat complex wounds in diabetic patients. Successful completion of this study will bring clinical evidence of the performance of MAP Wound Matrix as well as crucial information to set the next larger clinical study in order to drive adoption in wound care industry.
摘要/摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephanie Deshayes其他文献

Stephanie Deshayes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephanie Deshayes', 18)}}的其他基金

A first in human clinical study of TT101, a synthetic immunomodulatory material to build new functional tissue over exposed bone as a one time treatment for diabetic limb preservation patients
TT101 是一种合成免疫调节材料,可在暴露的骨骼上构建新的功能组织,作为糖尿病肢体保留患者的一次性治疗,这是首次进行人体临床研究
  • 批准号:
    10582523
  • 财政年份:
    2021
  • 资助金额:
    $ 136.81万
  • 项目类别:
Diversity supplement for Oliver Viyar to receive research training in tissue engineering.
奥利弗·维亚尔 (Oliver Viyar) 接受组织工程研究培训的多样性补充。
  • 批准号:
    10075090
  • 财政年份:
    2019
  • 资助金额:
    $ 136.81万
  • 项目类别:
MAP: a Flowable, Precision-Engineered, and Tunable Tissue Scaffold Leveraging Hyper-Porous Geometry to Control Inflammation and Promote Regenerative Healing in Diabetic Wounds
MAP:一种可流动、精密设计且可调节的组织支架,利用超多孔几何形状来控制炎症并促进糖尿病伤口的再生愈合
  • 批准号:
    9909864
  • 财政年份:
    2019
  • 资助金额:
    $ 136.81万
  • 项目类别:
MAP: a Flowable, Precision-Engineered, and Tunable Tissue Scaffold Leveraging Hyper-Porous Geometry to Control Inflammation and Promote Regenerative Healing in Diabetic Wounds
MAP:一种可流动、精密设计且可调节的组织支架,利用超多孔几何形状来控制炎症并促进糖尿病伤口的再生愈合
  • 批准号:
    10015273
  • 财政年份:
    2019
  • 资助金额:
    $ 136.81万
  • 项目类别:

相似海外基金

Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
  • 批准号:
    10707830
  • 财政年份:
    2023
  • 资助金额:
    $ 136.81万
  • 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
  • 批准号:
    479728
  • 财政年份:
    2023
  • 资助金额:
    $ 136.81万
  • 项目类别:
    Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
  • 批准号:
    10884567
  • 财政年份:
    2023
  • 资助金额:
    $ 136.81万
  • 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
  • 批准号:
    10751964
  • 财政年份:
    2023
  • 资助金额:
    $ 136.81万
  • 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
  • 批准号:
    486321
  • 财政年份:
    2022
  • 资助金额:
    $ 136.81万
  • 项目类别:
    Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
  • 批准号:
    10676786
  • 财政年份:
    2022
  • 资助金额:
    $ 136.81万
  • 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
  • 批准号:
    10440970
  • 财政年份:
    2022
  • 资助金额:
    $ 136.81万
  • 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
  • 批准号:
    10642998
  • 财政年份:
    2022
  • 资助金额:
    $ 136.81万
  • 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
  • 批准号:
    10482465
  • 财政年份:
    2022
  • 资助金额:
    $ 136.81万
  • 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
  • 批准号:
    10191053
  • 财政年份:
    2020
  • 资助金额:
    $ 136.81万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了