An automated system to interpret echocardiography to predict adverse outcomes in patients with right ventricular dysfunction in daily hospital practice

一种解释超声心动图的自动化系统,以预测日常医院实践中右心室功能障碍患者的不良后果

基本信息

  • 批准号:
    10326000
  • 负责人:
  • 金额:
    $ 34.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-15 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary Right ventricle (RV) dysfunction is a common and complex form of pediatric heart disease. It is also a common contributor to morbidity and mortality for patients with congenital heart diseases (CHD). Due to the complex geometry of the RV and its relative adaptability to changing physiologic conditions, RV dysfunction is poorly understood and difficult to characterize precisely and accurately, thus diagnosis is often delayed. The most common diagnosis tool is echocardiograms. Manual review of echocardiograms is time consuming, however. Furthermore, there might be uncovered echocardiogram patterns associated with RV dysfunctions. In adult studies, machine learning models (MLM) have been successfully implemented to assess RV functions by echocardiograms. We hypothesize that applying novel MLM to pediatric echocardiograms will allow us to improve the accuracy and reliability of assessment, as well as identify novel markers of RV dysfunction. We propose to develop an automated tool to generate a RV health score to identify RV dysfunction and predict the development and time of adverse outcomes including heart failure, heart and/or lung transplantation, and death. The automated tool will constitute an early warning system module, which will be deployed onto a big-data-based risk prediction platform developed by our small business. The study has three specific aims. First, we will extract echocardiograms and structured electronic medical records from the Stanford Children’s Hospital. Cohorts of children with normal or abnormal RV will be constructed. Second, MLM will be developed and validated to 1) predict the presence of RV dysfunction and the probability of adverse outcomes, and 2) predict the rate of progression to adverse outcomes. A deep learning-based workflow will be established to take input of pediatric echocardiogram and clinical data and generate predictions. Third, we will integrate the models developed in Aim #2 into the HBI Spotlight Solutions. The Spotlight Solutions include a healthcare surveillance platform with high-capacity data infrastructure and risk engines to offer AI solutions to care facilities participating the Healthix, the largest public health information exchange network in the US. This will prepare our algorithms for further clinical validation in other cohorts.
项目摘要 右心室(RV)功能障碍是一种常见而复杂的小儿心脏病。是 也是先天性心脏病患者发病率和死亡率的常见因素 (CHD)。由于RV的复杂几何形状及其对变化的相对适应性, 生理条件下,RV功能障碍了解甚少,难以表征 准确性和准确性,因此诊断往往被延误。最常用的诊断工具是 超声心动图然而,人工检查超声心动图是耗时的。 此外,可能存在未被发现的与RV相关的超声心动图模式, 功能障碍在成人研究中,机器学习模型(MLM)已经成功地 通过超声心动图评估RV功能。我们假设,应用新的 将MLM应用于儿科超声心动图将使我们能够提高 评估,以及确定RV功能障碍的新标志物。我们建议发展一个 自动化工具,用于生成RV健康评分,以识别RV功能障碍并预测 不良结局(包括心力衰竭、心脏和/或肺)的发生和时间 移植和死亡。自动化工具将构成预警系统模块, 这将被部署到一个基于大数据的风险预测平台上, 业务这项研究有三个具体目标。首先,我们将提取超声心动图, 斯坦福大学儿童医院的结构化电子病历。个儿童队列 将构建正常或异常RV。第二,传销将发展和验证 1)预测RV功能障碍的存在和不良结局的概率,以及2) 预测不良结局的进展率。一个基于深度学习的工作流程将是 建立了儿科超声心动图和临床数据的输入,并生成预测。 第三,我们将把目标2中开发的模型集成到HBI Spotlight解决方案中。的 Spotlight解决方案包括一个具有高容量数据的医疗保健监控平台 基础设施和风险引擎,为参与Healthix的医疗机构提供人工智能解决方案, 美国最大的公共卫生信息交换网络。这将为我们的 用于在其他队列中进行进一步临床验证的算法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JAMES W SCHILLING其他文献

JAMES W SCHILLING的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JAMES W SCHILLING', 18)}}的其他基金

An automated system to differentiate Kawasaki disease from febrile illness with real life clinical datasets in New York City
利用纽约市真实临床数据集区分川崎病和发热性疾病的自动化系统
  • 批准号:
    10477176
  • 财政年份:
    2022
  • 资助金额:
    $ 34.65万
  • 项目类别:
ACQUISITION OF DNA SYNTHESIZER & PROTEIN SEQUENCER
收购 DNA 合成器
  • 批准号:
    3872112
  • 财政年份:
  • 资助金额:
    $ 34.65万
  • 项目类别:

相似海外基金

Exploring the mental health and wellbeing of adolescent parent families affected by HIV in South Africa
探讨南非受艾滋病毒影响的青少年父母家庭的心理健康和福祉
  • 批准号:
    ES/Y00860X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Fellowship
Scaling-up co-designed adolescent mental health interventions
扩大共同设计的青少年心理健康干预措施
  • 批准号:
    MR/Y020286/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Fellowship
Shared Spaces: The How, When, and Why of Adolescent Intergroup Interactions
共享空间:青少年群体间互动的方式、时间和原因
  • 批准号:
    ES/T014709/2
  • 财政年份:
    2024
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Research Grant
Social Media Mechanisms Affecting Adolescent Mental Health (SoMe3)
影响青少年心理健康的社交媒体机制 (SoMe3)
  • 批准号:
    MR/X034925/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Fellowship
Parent-adolescent informant discrepancies: Predicting suicide risk and treatment outcomes
父母与青少年信息差异:预测自杀风险和治疗结果
  • 批准号:
    10751263
  • 财政年份:
    2024
  • 资助金额:
    $ 34.65万
  • 项目类别:
The Impact of Online Social Interactions on Adolescent Cognition
在线社交互动对青少年认知的影响
  • 批准号:
    DE240101039
  • 财政年份:
    2024
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Discovery Early Career Researcher Award
Adolescent sugar overconsumption programs food choices via altered dopamine signalling
青少年糖过度消费通过改变多巴胺信号来影响食物选择
  • 批准号:
    BB/Y006496/1
  • 财政年份:
    2024
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Research Grant
Resilience Factors, Pain, and Physical Activity in Adolescent Chronic Musculoskeletal Pain
青少年慢性肌肉骨骼疼痛的弹性因素、疼痛和体力活动
  • 批准号:
    10984668
  • 财政年份:
    2024
  • 资助金额:
    $ 34.65万
  • 项目类别:
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Evaluating the impact of changes in the proximity and density of vape retailers around secondary schools in Ontario on adolescent vaping behaviours
评估安大略省中学周围电子烟零售商的距离和密度变化对青少年电子烟行为的影响
  • 批准号:
    500515
  • 财政年份:
    2023
  • 资助金额:
    $ 34.65万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了