An automated system to interpret echocardiography to predict adverse outcomes in patients with right ventricular dysfunction in daily hospital practice
一种解释超声心动图的自动化系统,以预测日常医院实践中右心室功能障碍患者的不良后果
基本信息
- 批准号:10326000
- 负责人:
- 金额:$ 34.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdolescentAdoptedAdultAlgorithmsAnatomyAutomationBig DataBiological MarkersBusinessesCardiacCaringCessation of lifeChildChildhoodClinicalClinical DataClinical ManagementCommunitiesComplexComputerized Medical RecordConsumptionDataDevelopmentDiagnosisDiagnosticDisease ProgressionEchocardiographyEnvironmentEvaluationFunctional disorderGeometryHealthHealth care facilityHealthcareHeart DiseasesHeart TransplantationHeart failureHospitalsImprove AccessInfantInterventionKnowledgeLearningLeft ventricular structureLinkLongterm Follow-upLung TransplantationMachine LearningManualsMedicalModelingMorbidity - disease rateNew York CityOperative Surgical ProceduresOutcomeParticipantPatient CarePatient riskPatientsPatternPediatric HospitalsPediatric cardiologyPhasePhysiologicalPlug-inPrecision HealthProbabilityProcessProviderPublic HealthRight Ventricular DysfunctionRight ventricular structureRiskRisk FactorsSamplingSmall Business Technology Transfer ResearchSystemTestingTimeTrainingUniversitiesUpdateValidationaccurate diagnosisadverse outcomebasebilling dataclinical decision-makingcohortcongenital heart disordercostdata infrastructuredeep learningelectronic structuregenomic datahealth care availabilityheart functionimprovedindividual patientinnovationmortalitynovelnovel markerpopulation healthprediction algorithmpressureprospectiverisk predictionstructured datatooltreatment effect
项目摘要
Project Summary
Right ventricle (RV) dysfunction is a common and complex form of pediatric heart disease. It is
also a common contributor to morbidity and mortality for patients with congenital heart diseases
(CHD). Due to the complex geometry of the RV and its relative adaptability to changing
physiologic conditions, RV dysfunction is poorly understood and difficult to characterize
precisely and accurately, thus diagnosis is often delayed. The most common diagnosis tool is
echocardiograms. Manual review of echocardiograms is time consuming, however.
Furthermore, there might be uncovered echocardiogram patterns associated with RV
dysfunctions. In adult studies, machine learning models (MLM) have been successfully
implemented to assess RV functions by echocardiograms. We hypothesize that applying novel
MLM to pediatric echocardiograms will allow us to improve the accuracy and reliability of
assessment, as well as identify novel markers of RV dysfunction. We propose to develop an
automated tool to generate a RV health score to identify RV dysfunction and predict the
development and time of adverse outcomes including heart failure, heart and/or lung
transplantation, and death. The automated tool will constitute an early warning system module,
which will be deployed onto a big-data-based risk prediction platform developed by our small
business. The study has three specific aims. First, we will extract echocardiograms and
structured electronic medical records from the Stanford Children’s Hospital. Cohorts of children
with normal or abnormal RV will be constructed. Second, MLM will be developed and validated
to 1) predict the presence of RV dysfunction and the probability of adverse outcomes, and 2)
predict the rate of progression to adverse outcomes. A deep learning-based workflow will be
established to take input of pediatric echocardiogram and clinical data and generate predictions.
Third, we will integrate the models developed in Aim #2 into the HBI Spotlight Solutions. The
Spotlight Solutions include a healthcare surveillance platform with high-capacity data
infrastructure and risk engines to offer AI solutions to care facilities participating the Healthix,
the largest public health information exchange network in the US. This will prepare our
algorithms for further clinical validation in other cohorts.
项目概要
右心室(RV)功能障碍是小儿心脏病的一种常见且复杂的形式。这是
也是先天性心脏病患者发病率和死亡率的常见因素
(冠心病)。由于房车的复杂几何形状及其对变化的相对适应性
生理条件下,右心室功能障碍知之甚少且难以表征
精确且准确,因此常常延误诊断。最常见的诊断工具是
超声心动图。然而,手动检查超声心动图非常耗时。
此外,可能存在与 RV 相关的未发现的超声心动图模式
功能障碍。在成人研究中,机器学习模型(MLM)已成功
通过超声心动图评估 RV 功能。我们假设应用小说
MLM 到儿科超声心动图将使我们能够提高诊断的准确性和可靠性
评估,以及识别 RV 功能障碍的新标志物。我们建议开发一个
生成 RV 健康评分的自动化工具,以识别 RV 功能障碍并预测
不良后果(包括心力衰竭、心脏和/或肺)的发展和时间
移植、死亡。自动化工具将构成预警系统模块,
将部署到我们小公司开发的基于大数据的风险预测平台上
商业。该研究有三个具体目标。首先,我们将提取超声心动图和
斯坦福儿童医院的结构化电子病历。儿童队列
将建造具有正常或异常的RV。其次,将开发和验证传销
1) 预测右心室功能障碍的存在以及不良结果的可能性,以及 2)
预测不良结果的进展率。基于深度学习的工作流程将是
建立用于输入儿科超声心动图和临床数据并生成预测。
第三,我们将把目标 #2 中开发的模型集成到 HBI Spotlight 解决方案中。这
Spotlight 解决方案包括具有大容量数据的医疗保健监控平台
基础设施和风险引擎,为参与 Healthix 的护理机构提供人工智能解决方案,
美国最大的公共卫生信息交换网络。这将为我们准备
在其他队列中进一步进行临床验证的算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAMES W SCHILLING其他文献
JAMES W SCHILLING的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAMES W SCHILLING', 18)}}的其他基金
An automated system to differentiate Kawasaki disease from febrile illness with real life clinical datasets in New York City
利用纽约市真实临床数据集区分川崎病和发热性疾病的自动化系统
- 批准号:
10477176 - 财政年份:2022
- 资助金额:
$ 34.65万 - 项目类别:
相似海外基金
Exploring the mental health and wellbeing of adolescent parent families affected by HIV in South Africa
探讨南非受艾滋病毒影响的青少年父母家庭的心理健康和福祉
- 批准号:
ES/Y00860X/1 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
Fellowship
Scaling-up co-designed adolescent mental health interventions
扩大共同设计的青少年心理健康干预措施
- 批准号:
MR/Y020286/1 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
Fellowship
Shared Spaces: The How, When, and Why of Adolescent Intergroup Interactions
共享空间:青少年群体间互动的方式、时间和原因
- 批准号:
ES/T014709/2 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
Research Grant
Social Media Mechanisms Affecting Adolescent Mental Health (SoMe3)
影响青少年心理健康的社交媒体机制 (SoMe3)
- 批准号:
MR/X034925/1 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
Fellowship
Parent-adolescent informant discrepancies: Predicting suicide risk and treatment outcomes
父母与青少年信息差异:预测自杀风险和治疗结果
- 批准号:
10751263 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
Adolescent sugar overconsumption programs food choices via altered dopamine signalling
青少年糖过度消费通过改变多巴胺信号来影响食物选择
- 批准号:
BB/Y006496/1 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
Research Grant
The Impact of Online Social Interactions on Adolescent Cognition
在线社交互动对青少年认知的影响
- 批准号:
DE240101039 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
Discovery Early Career Researcher Award
Resilience Factors, Pain, and Physical Activity in Adolescent Chronic Musculoskeletal Pain
青少年慢性肌肉骨骼疼痛的弹性因素、疼痛和体力活动
- 批准号:
10984668 - 财政年份:2024
- 资助金额:
$ 34.65万 - 项目类别:
Augmented Social Play (ASP): smartphone-enabled group psychotherapeutic interventions that boost adolescent mental health by supporting real-world connection and sense of belonging
增强社交游戏 (ASP):智能手机支持的团体心理治疗干预措施,通过支持现实世界的联系和归属感来促进青少年心理健康
- 批准号:
10077933 - 财政年份:2023
- 资助金额:
$ 34.65万 - 项目类别:
EU-Funded
Family-Focused Adolescent & Lifelong Health Promotion (FLOURISH)
以家庭为中心的青少年
- 批准号:
10050850 - 财政年份:2023
- 资助金额:
$ 34.65万 - 项目类别:
EU-Funded














{{item.name}}会员




