An automated system to differentiate Kawasaki disease from febrile illness with real life clinical datasets in New York City
利用纽约市真实临床数据集区分川崎病和发热性疾病的自动化系统
基本信息
- 批准号:10477176
- 负责人:
- 金额:$ 34.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAgeAlgorithmsAneurysmAutomationBig DataBig Data MethodsBiological MarkersBloodBostonBusinessesCardiovascular systemCaringCessation of lifeChildChildhoodClinicalColoradoCommunitiesComputer AssistedCoronary AneurysmCountyDataData SetData SourcesDecision MakingDiagnosisDiagnostic testsDiseaseDisease ManagementEchocardiographyElectronic Health RecordEnvironmentEthnic OriginEthnic groupEvaluationFeverGoalsGoldHealthHealth PersonnelHealthcareHeart DiseasesIllness DaysIncidenceInfectionInflammatoryInternationalInterventionIntravenous ImmunoglobulinsKnowledgeLaboratoriesLifeLong IslandLongterm Follow-upMedicalMedicineModelingMucocutaneous Lymph Node SyndromeMyocardial InfarctionNew York CityOrangesOutcomePatient CarePatient riskPatientsPatternPediatric HospitalsPerformancePhasePopulationPopulation HeterogeneityPrecision HealthPredictive AnalyticsProcessProviderPublic HealthRaceRiskRisk FactorsScreening procedureSmall Business Technology Transfer ResearchSystemTaiwanTestingTimeTranslatingTranslationsUniversitiesUpdateValidationVisitaccurate diagnosisbasebilling dataclinical decision-makingcloud basedcohortcommercializationconnected carecostdata infrastructuredata warehousediagnostic accuracydifferential expressiondisease diagnosticeconomic determinantempoweredethnic diversitygenomic dataimprovedindividual patientinnovationmortalitypatient screeningpoint of carepopulation healthscreeningsocialsocial determinantsstatistical learningstructured datatooltv watching
项目摘要
ABSTRACT – Kawasaki disease (KD) is the most common cause of acquired heart disease in
children. Treatment with intravenous immunoglobulin (IVIG) reduces the incidence of coronary
aneurysms and risk of long-term cardiovascular complications. IVIG is recommended to be
given within 10 days of illness; however only 4.7% receive the correct diagnosis at the first
medical visit. Timely and accurately diagnosis of KD is critical, yet there isn’t a gold standard
diagnostic test. A challenge of diagnosis is that the clinical signs of KD overlap those of other
pediatric febrile illnesses. We previously applied statistical learning using clinical and laboratory
test variables to differentiate KD from febrile illnesses and validated the algorithm in five
children’s hospitals in the US. Results showed its potential of being a computer-assist tool of
decision making at point of care in the settings where echocardiography would not be readily
available. Before translation and commercialization, the algorithm needs to be validated in a
large, diverse population and integrated into a patient surveillance platform as a real-time
screening tool for healthcare providers to use. In this project, we propose three specific aims to
address the central hypothesis that a KD screening tool incorporating our previously identified
and newly found patient-level variables in the electronic health record (EHR) can differentiate
KD from clinically similar febrile illnesses in an ethnically diverse pediatric population in New
York City (NYC). We will collaborate with Healthix, the nation’s largest public health information
exchange (HIE) with data of over 16 million patients from NYC. In Aim 1, we will set up a
pediatric EHR warehouse of patients with KD and other febrile illnesses from Healthix NYC data
sources. In Aim 2, we will identify features that are differentially expressed between patients
with KD and patients with other febrile illnesses, and develop an improved algorithm to
differentiate KD from other febrile illnesses. Finally, we will integrate the algorithm into the HBI
Spotlight Solutions. The Spotlight Solutions include a healthcare surveillance platform with high-
capacity data infrastructure and risk engines to offer AI solutions to providers. We expect
ultimately an HIE-based pediatric KD assessment system will be ready to alert HIE participating
providers for timely evaluation, treatment and follow up for the long-term cardiovascular
sequelae in NYC and other communities.
摘要川崎病(Kawasaki disease, KD)是获得性心脏病最常见的病因
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Single center blind testing of a US multi-center validated diagnostic algorithm for Kawasaki disease in Taiwan.
- DOI:10.3389/fimmu.2022.1031387
- 发表时间:2022
- 期刊:
- 影响因子:7.3
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAMES W SCHILLING其他文献
JAMES W SCHILLING的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAMES W SCHILLING', 18)}}的其他基金
An automated system to interpret echocardiography to predict adverse outcomes in patients with right ventricular dysfunction in daily hospital practice
一种解释超声心动图的自动化系统,以预测日常医院实践中右心室功能障碍患者的不良后果
- 批准号:
10326000 - 财政年份:2021
- 资助金额:
$ 34.59万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 34.59万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 34.59万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 34.59万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 34.59万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 34.59万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 34.59万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 34.59万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 34.59万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 34.59万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 34.59万 - 项目类别:
Research Grant














{{item.name}}会员




