Analysis of homolog-based CRISPR editing in somatic cells
体细胞中基于同源物的 CRISPR 编辑分析
基本信息
- 批准号:10343429
- 负责人:
- 金额:$ 31.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdultAffectAgricultureAllelesBacteriaBiologyCRISPR gene driveCell CycleCell LineCellsChromosome MappingChromosome PairingChromosomesClustered Regularly Interspaced Short Palindromic RepeatsCulicidaeCystic FibrosisCystic Fibrosis Transmembrane Conductance RegulatorDNADNA RepairDNA cassetteDisease modelDrosophila genusEctopic ExpressionElementsEndonuclease IEventFrequenciesG2 PhaseGene ConversionGenesGeneticGenomeGenomicsGrantGuide RNAHomologous GeneHumanHuman Cell LineInduced MutationInsect ControlInsectaMammalian CellMammalsMediatingMedicineMeiosisMitoticModelingMutationNonhomologous DNA End JoiningOncogenesOrganismOutcomePathway interactionsPhenotypePigmentation physiologic functionPopulationProcessReporterResistanceS phaseSequence HomologsSiteSomatic CellSystemTechnologyTestingVariantVisualizationYeastsbasebase editingdesigndevelopmental geneticsdisease-causing mutationexpectationexperimental studyflygastrointestinal epitheliumgene correctiongene drive allelegene drive systemgene therapygenetic elementgenetic variantgenome editinggenome integritygenomic locusimprovedin vivoinsect disease vectorinsightmutantnext generationnotch proteinnovelnovel strategiesnucleaseportabilityprecise genome editingprecursor cellrepair modelrepair strategyrepairedstem cellstooltransgene expression
项目摘要
Recently developed CRISPR-based systems permit precise genome editing by inducing targeted DNA
breaks at specific sites in the genome. Cellular DNA repair machinery can restore genome integrity by copying
information from the intact homologous chromosome at the cleavage site via homology directed repair (HDR).
While precise HDR-mediated DNA repair is the predominant pathway active during meiosis, the competing and
potentially mutagenic non-homologous end-joining pathway (NHEJ) is typically thought to prevail in somatic
cells. One reason for this bias is that the NHEJ pathway is active throughout somatic cell cycles, while HDR is
primarily restricted to post-replicative S and G2 phases. Thus, achieving efficient HDR-based gene editing in
somatic cells has proven challenging, which limits the in vivo use of this technology for human gene therapy.
My group has contributed to developing the first CRISPR-based gene-drive (or active genetic) systems in
flies, mosquitoes, mammals, and bacteria that bias germline inheritance of genetic elements programmed to
cut the genome at their site of insertion. We also pioneered allelic-drive systems designed to promote biased
inheritance of a favored allelic variant at a separate genetic locus. These germline drive systems also produce
somatic phenotypes, which have generally been attributed to mutations induced by the NHEJ pathway.
Recently, we developed genetic elements we refer to as “CopyCatchers” that permit visualization of HDR-
mediated copying of gene cassettes. These studies have revealed an unexpectedly high frequency of somatic
gene conversion (SGC) events in Drosophila (30-50%) wherein the chromosome homolog serves as a DNA
repair template. Rates of SGC can be improved further by optimizing delivery of CRISPR components, or by
reducing the expression of various genes encoding factors involved in DNA repair or chromosome pairing.
Preliminary experiments indicate that interhomolog SGC can also take place in human cells and point to
untapped strategies for repairing disease-causing mutations using intact sequences from the homologous
chromosome.
In this grant we propose to explore SGC repair mechanisms mediated by Cas9 and Nickase in somatic
cells of Drosophila and then extend analysis of this interhomolog repair process to human cells. First, we will
analyze the mechanisms underlying CRISPR dependent copying of gene cassettes or allelic variants to
optimize their activities. Next, we will develop and optimize Drosophila models for homolog-based repair of
disease-causing mutations in the Notch locus affecting mitotically active stem cells or in post-mitotic cells in the
adult gut epithelium using a humanized Drosophila CFTR–/– disease model. Finally, we will assess whether
insights gained in Drosophila are portable to human somatic cell lines, and whether interhomolog SGC can
restore native gene activity in human cell-based models for cystic fibrosis. Enhancing homolog-based repair in
mammalian cells could offer transformative possibilities for next-generation gene therapy strategies.
最近开发的基于 CRISPR 的系统可以通过诱导目标 DNA 进行精确的基因组编辑
基因组中特定位点的断裂。细胞DNA修复机制可以通过复制恢复基因组完整性
通过同源定向修复(HDR)从切割位点的完整同源染色体获取信息。
虽然精确的 HDR 介导的 DNA 修复是减数分裂期间活跃的主要途径,但竞争性和
潜在诱变的非同源末端连接途径(NHEJ)通常被认为在体细胞中普遍存在
细胞。造成这种偏差的原因之一是 NHEJ 通路在整个体细胞周期中都处于活跃状态,而 HDR 则在整个体细胞周期中处于活跃状态。
主要限于复制后 S 期和 G2 期。因此,实现高效的基于 HDR 的基因编辑
体细胞已被证明具有挑战性,这限制了该技术在人类基因治疗中的体内应用。
我的团队为开发第一个基于 CRISPR 的基因驱动(或活性遗传)系统做出了贡献
苍蝇、蚊子、哺乳动物和细菌,它们会偏向被编程的遗传元件的种系遗传
在插入位点切割基因组。我们还开创了等位基因驱动系统,旨在促进偏向
在单独的基因位点遗传偏好的等位基因变异。这些种系驱动系统还产生
体细胞表型,通常归因于 NHEJ 途径诱导的突变。
最近,我们开发了我们称之为“CopyCatchers”的遗传元素,它允许 HDR 可视化
介导的基因盒复制。这些研究揭示了出乎意料的高频率的体细胞
果蝇 (30-50%) 中的基因转换 (SGC) 事件,其中染色体同源物充当 DNA
修复模板。通过优化 CRISPR 组件的递送,或者通过
减少参与 DNA 修复或染色体配对的各种基因编码因子的表达。
初步实验表明,同源 SGC 也可以在人类细胞中发生,并指出
使用同源序列的完整序列修复致病突变的未开发策略
染色体。
在这笔资助中,我们建议探索体细胞中由 Cas9 和 Nickase 介导的 SGC 修复机制
果蝇细胞,然后将这种同源修复过程的分析扩展到人类细胞。首先,我们将
分析基因盒或等位基因变体的 CRISPR 依赖性复制的潜在机制
优化他们的活动。接下来,我们将开发和优化果蝇模型,用于基于同源物的修复
影响有丝分裂活性干细胞或有丝分裂后细胞的Notch位点的致病突变
使用人源化果蝇 CFTR–/– 疾病模型对成人肠道上皮进行研究。最后,我们将评估是否
在果蝇中获得的见解可以移植到人类体细胞系中,并且同源 SGC 是否可以
恢复人类囊性纤维化细胞模型中的天然基因活性。增强基于同源物的修复
哺乳动物细胞可以为下一代基因治疗策略提供变革的可能性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ETHAN BIER其他文献
ETHAN BIER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ETHAN BIER', 18)}}的其他基金
Analysis of homolog-based CRISPR editing in somatic cells
体细胞中基于同源物的 CRISPR 编辑分析
- 批准号:
10676726 - 财政年份:2022
- 资助金额:
$ 31.6万 - 项目类别:
Development of next-generation gene drive technologies for Anopheles population engineering
开发用于按蚊种群工程的下一代基因驱动技术
- 批准号:
10278897 - 财政年份:2021
- 资助金额:
$ 31.6万 - 项目类别:
Development of next-generation gene drive technologies for Anopheles population engineering
开发用于按蚊种群工程的下一代基因驱动技术
- 批准号:
10624305 - 财政年份:2021
- 资助金额:
$ 31.6万 - 项目类别:
Development of next-generation gene drive technologies for Anopheles population engineering
开发用于按蚊种群工程的下一代基因驱动技术
- 批准号:
10408862 - 财政年份:2021
- 资助金额:
$ 31.6万 - 项目类别:
The mutagenic chain reaction: a method for autocatalyic gene dissemination
诱变链式反应:一种自催化基因传播的方法
- 批准号:
10211352 - 财政年份:2016
- 资助金额:
$ 31.6万 - 项目类别:
The mutagenic chain reaction: a method for autocatalyic gene dissemination
诱变链式反应:一种自催化基因传播的方法
- 批准号:
9009589 - 财政年份:2016
- 资助金额:
$ 31.6万 - 项目类别:
The mutagenic chain reaction: a method for autocatalyic gene dissemination
诱变链式反应:一种自催化基因传播的方法
- 批准号:
10395549 - 财政年份:2016
- 资助金额:
$ 31.6万 - 项目类别:
The mutagenic chain reaction: a method for autocatalyic gene dissemination
诱变链式反应:一种自催化基因传播的方法
- 批准号:
10614935 - 财政年份:2016
- 资助金额:
$ 31.6万 - 项目类别:
Mutagenic chain reaction-facilitated immunotherapy
诱变链式反应促进的免疫疗法
- 批准号:
9163059 - 财政年份:2016
- 资助金额:
$ 31.6万 - 项目类别:
Mutagenic chain reaction-facilitated immunotherapy
诱变链式反应促进的免疫疗法
- 批准号:
9755350 - 财政年份:2016
- 资助金额:
$ 31.6万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 31.6万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 31.6万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 31.6万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 31.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 31.6万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 31.6万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 31.6万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 31.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




