Development of a multifunctional, acoustofluidic 3D bioprinter with single-cell resolution

开发具有单细胞分辨率的多功能声流控 3D 生物打印机

基本信息

  • 批准号:
    10340194
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-04-01 至 2022-08-09
  • 项目状态:
    已结题

项目摘要

Project Summary Three-dimensional (3D) bioprinting is a rapidly emerging technology that has the potential to quickly print customized, functional, biological tissues. In recent years, much progress has been made in modifying traditional printing systems for 3D bioprinting. However, their printed tissues often lack the resolution and complexity necessary to achieve the essential functions, physiological conditions, and anisotropic properties found in native tissues. Therefore, there is a critical need to develop next-generation 3D bioprinting instruments that address the following three key technologic limitations: (1) the inability to control internal cell positions in printed matrix material voxels and achieve the desired cell-cell spacing (i.e., cell proximity resolution < 10 µm) that is critical to ensure proper tissue functions from the cellular level and studying cell-cell interactions in the 3D microenvironments; (2) the inability to print tissues with high local cell densities (>109 cells/mL) as observed in vivo; and (3) the inability to perform scaffold-free printing of large-scale tissues with multiscale biomimetic cellular architectures (e.g., cell pattern and alignment), which are essential to achieve desired anisotropic tissue properties and key functions that depend on multiscale cell arrangements. Over the last ten years, we have developed a series of acoustofluidic (i.e., the fusion of acoustic and microfluidic) technologies, which are excellent candidates to address the bottlenecks above. In particular, we have recently developed acoustofluidic holography, an acoustics-based, biocompatible, and high-resolution cell manipulation technology that allows one to pattern, rotate, and concentrate cell seeded matrix materials before polymerization. Building upon this technology, in this R01 project, we propose to develop and validate an acoustofluidic 3D bioprinting prototype to print functional tissues with high cell proximity resolution (<10 µm) and complex features (such as biomimetic cellular architectures, controlled anisotropic properties, and high cell densities) in a biocompatible, fast, and scalable manner. Our acoustofluidic 3D bioprinter will be validated by printing vascularized tumor spheroids with stroma and anisotropic, innervated, vascularized skeletal muscle tissues. Compared to current 3D bioprinting instruments, our acoustofluidic 3D bioprinter will have multiple advantages including: (1) ability to control internal cell positions of printed matrix voxels and achieve high cell proximity resolution (< 10 µm); (2) ability to print tissues with high local cell densities (>109 cells/mL) and controlled density distributions; (3) ability to print tissues with multiscale cellular architectures and control tissues’ anisotropic properties without using scaffolds; and (4) high biocompatibility (>95% viability). With these advantages, the proposed acoustofluidic 3D bioprinting technology has the potential to significantly exceed current standards and address unmet needs in the 3D bioprinting field. We expect that our acoustofluidic 3D bioprinting technology will be of tremendous value to biomedical research communities working on fundamental in vitro and in vivo studies, cancer research, cell-cell interaction studies, tissue engineering, regenerative medicine, and drug screening.
项目摘要 三维(3D)生物打印是一种快速新兴的技术,具有快速打印的潜力。 定制的功能性生物组织近年来,在修改传统的 3D生物打印的打印系统。然而,他们打印的组织往往缺乏分辨率和复杂性 必须实现的基本功能,生理条件和各向异性的性质,发现在天然的 组织中因此,迫切需要开发下一代3D生物打印仪器, 以下三个关键技术限制:(1)无法控制印刷矩阵中的内部单元位置 材料体素并实现所需的单元-单元间距(即,单元邻近分辨率< 10 µm), 从细胞水平确保适当的组织功能,并在3D中研究细胞-细胞相互作用 (2)不能打印具有高局部细胞密度(>109个细胞/mL)的组织,如在微环境中观察到的。 (3)不能用多尺度仿生细胞进行大尺度组织的无支架打印 体系结构(例如,细胞图案和排列),这对于获得期望的各向异性组织是必要的 属性和关键功能,取决于多尺度细胞的安排。在过去的十年里,我们 开发了一系列声流体(即,声学和微流体的融合)技术, 优秀的候选人,以解决上述瓶颈。特别是,我们最近开发了声流体 全息术,一种基于声学的、生物相容的和高分辨率的细胞操纵技术, 以在聚合之前图案化、旋转和浓缩细胞接种的基质材料。在此基础上 技术,在这个R 01项目中,我们建议开发和验证声流体3D生物打印原型, 打印功能组织,具有高细胞邻近分辨率(<10 µm)和复杂特征(如仿生 细胞结构、受控的各向异性特性和高细胞密度), 可伸缩的方式。我们的声流体3D生物打印机将通过打印血管化肿瘤球体进行验证, 间质和各向异性的、神经支配的、血管化的骨骼肌组织。与目前的3D生物打印相比, 我们的声流体3D生物打印机将具有多种优势,包括:(1)能够控制内部 打印矩阵体素的单元位置,并实现高单元邻近分辨率(< 10 µm);(2)能够打印 具有高局部细胞密度(>109个细胞/mL)和受控密度分布的组织;(3)打印组织的能力 具有多尺度细胞结构和控制组织的各向异性特性,而不使用支架; (4)高生物相容性(>95%活力)。有了这些优点,所提出的声流体3D生物打印 技术有可能大大超过目前的标准,并解决3D中未满足的需求 生物打印领域。我们预计,我们的声流体3D生物打印技术将具有巨大的价值, 生物医学研究社区致力于基础的体外和体内研究,癌症研究,细胞-细胞 相互作用研究、组织工程、再生医学和药物筛选。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhenhua Tian其他文献

Zhenhua Tian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhenhua Tian', 18)}}的其他基金

Development of a multifunctional, acoustofluidic 3D bioprinter with single-cell resolution
开发具有单细胞分辨率的多功能声流控 3D 生物打印机
  • 批准号:
    10596518
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Development of a multifunctional, acoustofluidic 3D bioprinter with single-cell resolution
开发具有单细胞分辨率的多功能声流控 3D 生物打印机
  • 批准号:
    10708541
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
  • 批准号:
    22K13777
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
  • 批准号:
    10045111
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
  • 批准号:
    2749141
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
  • 批准号:
    10801667
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1738138
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
  • 批准号:
    17K18852
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
  • 批准号:
    1612567
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1621732
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了