New approaches for leveraging single-cell data to identify disease-critical genes and gene sets

利用单细胞数据识别疾病关键基因和基因集的新方法

基本信息

  • 批准号:
    10342464
  • 负责人:
  • 金额:
    $ 10.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-02-01 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Nominating candidate risk genes and gene sets underlying disease-critical processes is of utmost importance for developing drug targets and informing CRISPR screening experiments. To this end, large scale single-cell genomic and epigenomic data (from RNA-seq, ATAC-seq, Perturb-seq) can be integrated with genome wide association studies (GWAS) to enhance our understanding of the genetic architecture of human complex diseases and traits. In this proposal, I plan to develop new computational approaches to integrate single- cell functional genomic and epigenomic data with GWAS data for complex diseases and traits to identify and rank disease-critical genes and gene sets characterizing functional processes, as well as pinpoint short genomic regions linked to these disease-associated genes. My K99 training will be conducted at the Harvard T.H. Chan School of Public Health, as well as the Broad Institute, under the mentorship of Dr. Alkes Price. The key areas of my training will be to develop and evaluate approaches for gene-level and gene set-level functional architecture of diseases and traits and integrative analysis of single-cell, as well as bulk, functional genomics data with human disease genetics. My proposed approaches will attempt to bridge the gap between functional genomics and human genetics and downstream clinical drug/gene intervention experiments. The long- term goal of this research is to produce a set of computational tools that identify and rank top disease-critical genes, top disease-critical gene sets characterizing cell types or cellular processes and gene-linked genomic regions for each disease/trait. These approaches will reshape our understanding of the functional architecture of human diseases at cellular level and will inform future drug perturbation and CRISPR screening experiments. The first aim of this proposal is to develop methods to identify and rank disease-critical genes by integrating common and rare variant disease associations with gene-level functional information derived from single-cell genomics experiments. Here I will develop, compare and contrast multiple gene prioritization strategies that differ in how they annotate SNPs for a gene, how they aggregate variant level associations at gene level and how they use functional data in performing the gene prioritization. The second aim of this proposal is to develop new computational strategies to assess disease information in sets of genes that underlie a cell type or cellular processes active within or across cell types in a tissue. The third aim of this proposal is to pinpoint and prioritize short genomic regions that are either proximally or functionally linked (for example, as an enhancer) to disease- critical genes and gene sets from Aims 1 and 2. Here, I plan to integrate GWAS association signal near these gene-linked regions with deep learning models that can infer allelic effects at base pair resolution and single-cell ATAC-seq data. All disease-critical genes, gene sets and gene-linked regions along with relevant computational tools will be distributed publicly to the scientific community.
项目摘要/摘要 提名疾病关键过程的候选风险基因和基因集是至关重要的 用于开发药物靶点和通知CRISPR筛查实验。为此,大规模的单细胞 基因组和表观基因组数据(来自rna-seq、atac-seq、perturb-seq)可以与全基因组集成。 联合研究(GWAS),以加强我们对人类复合体遗传结构的理解 疾病和特征。在这项提案中,我计划开发新的计算方法来整合单个- 细胞功能基因组和表观基因组数据与用于鉴定复杂疾病和性状的GWAS数据 并对疾病关键基因和表征功能过程的基因集进行排序,以及精确定位 与这些疾病相关基因相关联的短基因组区域。我的K99培训将在 哈佛大学公共卫生学院,以及阿尔克斯博士指导下的博德研究所 价格。我的培训的主要领域将是开发和评估基因水平和基因集水平的方法 疾病和特性的功能架构与单细胞和整体功能的综合分析 基因组学数据与人类疾病遗传学。我提出的方法将试图弥合 功能基因组学与人类遗传学及下游临床药物/基因干预实验。长的- 这项研究的术语目标是产生一套计算工具,以识别和排名最关键的疾病 基因、表征细胞类型或细胞过程的顶级疾病关键基因集和与基因连锁的基因组 每种疾病/特征的区域。这些方法将重塑我们对功能体系结构的理解 在细胞水平上研究人类疾病,并将为未来的药物扰动和CRISPR筛查实验提供信息。 这项提议的第一个目标是开发方法来识别和排序疾病关键基因 来自单细胞的基因水平功能信息与常见和罕见变异疾病的关联 基因组学实验。在这里,我将开发、比较和对比多种不同的基因优先排序策略 在他们如何注释一个基因的SNPs,他们如何在基因水平上聚集变异水平的关联,以及他们如何 在执行基因优先排序时使用功能数据。这项提议的第二个目标是开发新的 评估构成细胞类型或细胞的一组基因中的疾病信息的计算策略 在组织中活跃的细胞类型内或跨细胞类型的过程。这项提案的第三个目标是明确并确定优先顺序 与疾病有近端或功能连锁(例如,作为增强子)的短基因组区域- 来自目标1和目标2的关键基因和基因组。在这里,我计划在这些附近整合GWAS关联信号 具有深度学习模型的基因连锁区域,可以在碱基对分辨率和单细胞水平上推断等位基因效应 ATAC-SEQ数据。所有疾病关键基因、基因组和基因连锁区域以及相关的计算 这些工具将向科学界公开分发。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
SAIGE-GENE+ improves the efficiency and accuracy of set-based rare variant association tests.
  • DOI:
    10.1038/s41588-022-01178-w
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    30.8
  • 作者:
    Zhou, Wei;Bi, Wenjian;Zhao, Zhangchen;Dey, Kushal K.;Jagadeesh, Karthik A.;Karczewski, Konrad J.;Daly, Mark J.;Neale, Benjamin M.;Lee, Seunggeun
  • 通讯作者:
    Lee, Seunggeun
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kushal Kumar Dey其他文献

Kushal Kumar Dey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kushal Kumar Dey', 18)}}的其他基金

New approaches for leveraging single-cell data to identify disease-critical genes and gene sets
利用单细胞数据识别疾病关键基因和基因集的新方法
  • 批准号:
    10768004
  • 财政年份:
    2023
  • 资助金额:
    $ 10.88万
  • 项目类别:

相似海外基金

Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
  • 批准号:
    502556
  • 财政年份:
    2024
  • 资助金额:
    $ 10.88万
  • 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
  • 批准号:
    10659303
  • 财政年份:
    2023
  • 资助金额:
    $ 10.88万
  • 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
  • 批准号:
    10674405
  • 财政年份:
    2023
  • 资助金额:
    $ 10.88万
  • 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
  • 批准号:
    10758772
  • 财政年份:
    2023
  • 资助金额:
    $ 10.88万
  • 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
  • 批准号:
    10676499
  • 财政年份:
    2023
  • 资助金额:
    $ 10.88万
  • 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
  • 批准号:
    2748611
  • 财政年份:
    2022
  • 资助金额:
    $ 10.88万
  • 项目类别:
    Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
  • 批准号:
    10532032
  • 财政年份:
    2022
  • 资助金额:
    $ 10.88万
  • 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
  • 批准号:
    22K05630
  • 财政年份:
    2022
  • 资助金额:
    $ 10.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
  • 批准号:
    10525070
  • 财政年份:
    2022
  • 资助金额:
    $ 10.88万
  • 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
  • 批准号:
    10689017
  • 财政年份:
    2022
  • 资助金额:
    $ 10.88万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了