RNA regulatory networks in neuronal cell type diversity and function
神经元细胞类型多样性和功能中的 RNA 调控网络
基本信息
- 批准号:10342485
- 负责人:
- 金额:$ 62.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-01 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:ANK3 geneAction PotentialsAffectAlternative SplicingAxonBehaviorBiological ModelsBrainCellsClassificationClustered Regularly Interspaced Short Palindromic RepeatsComplexComputer AnalysisDataData SetDiseaseES Cell LineElectrophysiology (science)ElementsExonsExperimental ModelsGTP-Binding Protein alpha Subunits, GsGangliaGene ExpressionGene Expression RegulationGenesGenetic TranscriptionGlutamatesGoalsHumanIn VitroInterneuronsKnock-outMammalsMedialMessenger RNAMethodsModelingMolecularMolecular ProfilingMorphologyMotor NeuronsMusMutagenesisNervous system structureNeuronsOrganPopulationProcessPropertyProtein FamilyProtein IsoformsProteinsRNARNA SplicingRNA-Binding ProteinsRNA-Protein InteractionRegulationRegulator GenesReporterResearchResourcesRestRodentRoleSamplingSpecific qualifier valueSpinalStructureSystemTaxonomyTestingTissuesTo specifyTranscriptValidationVariantWorkbasecell typeclinically relevantdeep learningdeep learning modeldriving forceembryonic stem cellexcitatory neuronin silicoin vivoin vivo Modelinhibitory neuroninnovationinsightinterdisciplinary approachmRNA Precursormachine learning methodmolecular markermouse modelneural circuitneurodevelopmentneuronal excitabilitynovelprogramssingle-cell RNA sequencingstatistical and machine learningstem cell differentiationsuccesstranscriptometranscriptome sequencingtranscriptomics
项目摘要
PROJECT SUMMARY
RNA regulatory networks in neuronal cell type diversity and function
The mammalian brain is probably the most complex organ in the body and its proper function requires
coordination of many diverse types of excitatory and inhibitory neurons that form distinct functional circuitries.
Characterization of neuronal cell types is fundamental to understand not only how the brain works, but also how
specific cell types are selectively affected in multiple neuronal disorders and how this process can be reversed.
A large number of neuronal cell types were recently defined based on their gene expression profiles in bulk and
single cells, and these cell types are organized into a hierarchical cell taxonomy. Alternative splicing is a
mechanism to generate multiple transcript and protein variants with distinct functions, thus providing a major
driving force of the molecular diversity in mammals. The overarching goal of my research group is to understand
the contribution of alternative splicing and the underlying RNA-regulatory networks in the brain and brain-related
disorders. Previous work from multiple groups, including ours, unambiguously demonstrated that the brain has
unique splicing-regulatory programs compared to non-neuronal tissues. Our studies also revealed the
establishment of a pan-neuronal splicing program regulated by multiple RNA-binding proteins (RBPs) during
neural development, and demonstrated the important role of the Rbfox protein family in regulating axonal
maturation and neuronal excitability. However, how alternative splicing contributes to the distinct molecular
profiles of diverse neuronal cell types in the cortex is currently poorly understood. We hypothesize that the
transcriptome diversity generated by highly regulated alternative exons is a major component that specifies
neuronal cell type identity and function. In this application, we describe our preliminary analysis of neuronal cell
type-specific alternative splicing regulation in mouse cortex, which provides strong support for the following
specific aims we would like to pursue: 1) Perform systematic analysis of neuronal cell type-specific alternative
splicing to identify novel neuronal subclasses and regulators using deep sc-RNA-seq data. 2) Validate our
computational predictions and characterize mechanisms of neuronal cell type-specific splicing regulation and
function using two complementary model systems: the distinction of two major subclasses of GABAergic
interneurons originating from caudal (CGE) and medial (MGE) ganglionic eminences, and a GABAergic neuron-
specific microexon in Ank3/Ankyrin G. To achieve our goal, we will use a multidisciplinary approach that
integrates cutting-edge statistical an machine learning methods and multiple in vitro and in vivo experimental
models. This study will generate a global and mechanistic view of precise alternative splicing regulation across
diverse neuronal cell types and illuminate its impact on neuronal structural and functional properties.
项目摘要
神经元细胞类型多样性和功能中的RNA调节网络
哺乳动物的大脑可能是身体中最复杂的器官,其正常功能需要
许多不同类型的兴奋性和抑制性神经元的协调,形成不同的功能回路。
神经元细胞类型的表征不仅是了解大脑如何工作的基础,
特定的细胞类型在多种神经元疾病中受到选择性影响,以及如何逆转这一过程。
最近基于大量的基因表达谱定义了大量神经元细胞类型,
单个细胞,并且这些细胞类型被组织成分层细胞分类。选择性剪接是一种
产生具有不同功能的多种转录物和蛋白质变体的机制,从而提供了一种主要的
哺乳动物分子多样性的驱动力。我的研究小组的首要目标是了解
选择性剪接和潜在RNA调节网络在大脑和大脑相关疾病中的贡献
紊乱包括我们在内的多个研究小组先前的工作明确地表明,
与非神经元组织相比,它具有独特的剪接调节程序。我们的研究还显示,
建立由多种RNA结合蛋白(RBP)调控的泛神经元剪接程序,
神经发育,并证明了Rbfox蛋白家族在调节轴突生长中的重要作用。
成熟和神经元兴奋性。然而,选择性剪接如何有助于不同的分子
目前对皮层中不同神经元细胞类型的分布了解甚少。我们假设
由高度调节的替代外显子产生的转录组多样性是一个主要组成部分,
神经元细胞类型的身份和功能。在本申请中,我们描述了我们对神经元细胞的初步分析,
小鼠皮层中的类型特异性可变剪接调节,这为以下内容提供了强有力的支持
我们想追求的具体目标:1)进行神经元细胞类型特异性替代的系统分析
使用深度sc-RNA-seq数据进行剪接以鉴定新的神经元亚类和调节子。2)验证我们
计算预测和表征神经元细胞类型特异性剪接调节的机制,
使用两个互补的模型系统的功能:GABA能的两个主要亚类的区别
中间神经元起源于尾侧(CGE)和内侧(MGE)神经节隆起,和GABA能神经元-
Ank 3/Ankyrin G特异性微外显子。为了实现我们的目标,我们将采用多学科方法,
整合了尖端的统计机器学习方法和多种体外和体内实验
模型这项研究将产生一个全球性的和机制的看法,精确的选择性剪接调控,
不同的神经元细胞类型,并阐明其对神经元结构和功能特性的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chaolin Zhang其他文献
Chaolin Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chaolin Zhang', 18)}}的其他基金
Mapping proximal and distal splicing-regulatory elements
绘制近端和远端剪接调控元件
- 批准号:
10658516 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Complexity and evolution of splicing-regulatory networks
剪接调控网络的复杂性和演化
- 批准号:
10799138 - 财政年份:2023
- 资助金额:
$ 62.5万 - 项目类别:
Complexity and evolution of splicing-regulatory networks
剪接调控网络的复杂性和演化
- 批准号:
10406411 - 财政年份:2022
- 资助金额:
$ 62.5万 - 项目类别:
Mapping proximal and distal splicing-regulatory elements
绘制近端和远端剪接调控元件
- 批准号:
10669332 - 财政年份:2022
- 资助金额:
$ 62.5万 - 项目类别:
Complexity and evolution of splicing-regulatory networks
剪接调控网络的复杂性和演化
- 批准号:
10706471 - 财政年份:2022
- 资助金额:
$ 62.5万 - 项目类别:
RNA Regulatory Networks in Neuronal Cell Type Diversity and Function
神经元细胞类型多样性和功能中的 RNA 调控网络
- 批准号:
10816681 - 财政年份:2022
- 资助金额:
$ 62.5万 - 项目类别:
Integrative analysis of tissue-specific alternative splicing regulation under adaptive selection
适应性选择下组织特异性选择性剪接调控的综合分析
- 批准号:
10402926 - 财政年份:2021
- 资助金额:
$ 62.5万 - 项目类别:
RNA Regulatory Networks in Neuronal Cell Type Diversity and Function
神经元细胞类型多样性和功能中的 RNA 调控网络
- 批准号:
10531908 - 财政年份:2021
- 资助金额:
$ 62.5万 - 项目类别:
CLIP Tool Kit (CTK): pipeline, user interface and tutorials for CLIP data analysis
CLIP 工具套件 (CTK):用于 CLIP 数据分析的管道、用户界面和教程
- 批准号:
9294442 - 财政年份:2017
- 资助金额:
$ 62.5万 - 项目类别:
Systematic functional dissection of neuronal transcriptome diversity
神经元转录组多样性的系统功能剖析
- 批准号:
9272022 - 财政年份:2016
- 资助金额:
$ 62.5万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 62.5万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 62.5万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 62.5万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 62.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 62.5万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 62.5万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 62.5万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 62.5万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 62.5万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 62.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)