Understanding the relationship between herd immunity and geographic scale to improve estimates of localized infectious disease outbreak risk

了解群体免疫与地理范围之间的关系,以改进对局部传染病爆发风险的估计

基本信息

  • 批准号:
    10339412
  • 负责人:
  • 金额:
    $ 13.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-13 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

ABSTRACT The size and frequency of outbreaks of vaccine-preventable diseases in the US are increasing. For example, although it was officially declared eliminated in 2000, there already have been as many measles cases in the US in the first five months of 2019 (940) than any full calendar year since 1994. Given trends in vaccine hesitancy, future outbreaks of measles and other vaccine-preventable diseases are all but certain to occur. Herd immunity describes the phenomenon wherein individuals without immunity from an infection are indirectly protected from that infection by immunized individuals within the population. It is an important concept for designing and monitoring vaccination campaigns and understanding infectious disease transmission dynamics. Despite its importance, a number of aspects of herd immunity remain under- or unexamined, thereby limiting its usefulness in applied epidemiological or public health settings. This K01 Award proposal focuses on herd immunity and its relationship with infectious disease outbreak risk at local geographic scales. My career goal is to become a leading scholar in the spatial epidemiology of vaccination and vaccine-preventable diseases, specializing in research that links together human behavior, policy, and disease transmission systems to understand the evolving nature of disease outbreak risk. The training activities focus on expanding my current expertise in health geography and spatial data analysis with specialized training in infectious disease epidemiology methods, agent- based modeling, and social network analysis. The proposed research program supports an interdisciplinary approach that integrates concepts and techniques from geography, epidemiology, data science and computational modeling, and public health practice to examine the complex relationships among vaccination coverage, herd immunity, geographic scale, spatial and social connectivity patterns, and disease transmission dynamics. My research aims are: 1) Evaluate approaches to define herds using network-based community detection algorithms, 2) Identify geographic scales at which the relationship between vaccination coverage and the herd immunity effect is detectable, and 3) Develop improved estimates of local disease outbreak risk by integrating potential chains of disease transmission with vaccination coverage data. My mentoring and advisory team have specialized expertise across the training and research topics, as well as experience leading interdisciplinary research teams. The outcomes of the research will be an innovative approach to define epidemiologically-relevant herds in the population, new information regarding the ability to detect the herd immunity effect across various geographic scales of analysis, and improved estimates of local infectious disease outbreak risk. The research, training, and mentoring plans proposed in this K01 award will support the development of a future R-level proposal to examine how the risk of local outbreaks of vaccine-preventable diseases evolves over space and time as changes occur in both human behaviors (e.g., vaccine refusal) and vaccine-related policy (e.g., banning exemptions from vaccination).
抽象的 美国可预防疾病的爆发的大小和频率正在增加。例如, 尽管它在2000年被正式宣布淘汰,但在 我们在2019年的前五个月(940)比1994年以来的任何完整日历年。给定疫苗犹豫的趋势, 未来的麻疹和其他可预防疾病的爆发几乎可以肯定发生。畜群免疫 描述了没有感染免疫力的个体间接保护的现象 人口中的免疫个体感染。这是设计和 监测疫苗接种运动并了解传染病的传播动态。尽管有它 重要的是,牛群免疫的许多方面仍然不足或未经检查,从而限制了其用途 在应用流行病学或公共卫生环境中。该K01奖提案的重点是群豁免权及其 与当地地理量表处的传染病爆发风险的关系。我的职业目标是成为一个 疫苗接种和疫苗预防疾病的空间流行病学领先学者,专门研究 将人类行为,政策和疾病传播系统联系在一起的研究以了解 疾病爆发风险不断发展的性质。培训活动的重点是扩大我目前的健康专业知识 地理和空间数据分析通过传染病流行病学方法进行专门培训,代理 基于建模和社交网络分析。拟议的研究计划支持跨学科 从地理,流行病学,数据科学和 计算建模和公共卫生实践,以检查疫苗接种之间的复杂关系 覆盖范围,牛群免疫,地理规模,空间和社会连通性模式以及疾病传播 动力学。我的研究目的是:1)评估使用基于网络的社区定义牛群的方法 检测算法,2)确定疫苗接种覆盖率之间关系的地理量表 可以检测到牛群免疫效应,3)通过通过 将疾病传播的潜在链与疫苗接种覆盖范围数据相结合。我的指导和咨询 团队在整个培训和研究主题中都有专业知识,并领导着经验 跨学科研究团队。研究结果将是定义的创新方法 在人口中,流行病学上的牛群,有关检测群体的能力的新信息 各种地理分析量表的免疫效应,并改善了局部传染病的估计值 爆发风险。该K01奖提出的研究,培训和指导计划将支持 开发未来的R级建议,以研究如何预防疫苗的局部爆发风险 随着人类行为的两种变化(例如,抗疫苗)和 与疫苗有关的政策(例如,禁止免除疫苗接种)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Delamater其他文献

Paul Delamater的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Delamater', 18)}}的其他基金

Understanding the relationship between herd immunity and geographic scale to improve estimates of localized infectious disease outbreak risk
了解群体免疫与地理范围之间的关系,以改进对局部传染病爆发风险的估计
  • 批准号:
    10578834
  • 财政年份:
    2020
  • 资助金额:
    $ 13.58万
  • 项目类别:

相似国自然基金

基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
  • 批准号:
    52378011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
社交网络上观点动力学的重要影响因素与高效算法
  • 批准号:
    62372112
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
  • 批准号:
    72372021
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
  • 批准号:
    72372070
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
算法鸿沟影响因素与作用机制研究
  • 批准号:
    72304017
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

New EHR-based multimorbidity index for diverse populations across the lifespan: development, validation, and application
针对不同人群整个生命周期的新的基于 EHR 的多病指数:开发、验证和应用
  • 批准号:
    10720597
  • 财政年份:
    2023
  • 资助金额:
    $ 13.58万
  • 项目类别:
Revealing the role of blood microbiome in childhood asthma
揭示血液微生物组在儿童哮喘中的作用
  • 批准号:
    10590805
  • 财政年份:
    2023
  • 资助金额:
    $ 13.58万
  • 项目类别:
Identifying pediatric asthma subtypes using novel privacy-preserving federated machine learning methods
使用新颖的隐私保护联合机器学习方法识别小儿哮喘亚型
  • 批准号:
    10713424
  • 财政年份:
    2023
  • 资助金额:
    $ 13.58万
  • 项目类别:
Leveraging Automated Optimization of Inspired Oxygen and Oxidized Biomarker Lipidomics for Targeted Oxygenation during Mechanical Ventilation: a Pragmatic Clinical Trial
利用吸入氧和氧化生物标志物脂质组学的自动优化在机械通气期间进行靶向氧合:一项实用的临床试验
  • 批准号:
    10592000
  • 财政年份:
    2023
  • 资助金额:
    $ 13.58万
  • 项目类别:
Clonal dynamics of the blood stem cell niche
血液干细胞生态位的克隆动力学
  • 批准号:
    10569876
  • 财政年份:
    2023
  • 资助金额:
    $ 13.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了