Control of PGC1alpha Translation and Function
PGC1alpha 翻译和功能的控制
基本信息
- 批准号:10341051
- 负责人:
- 金额:$ 58.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2023-07-04
- 项目状态:已结题
- 来源:
- 关键词:5&apos Untranslated RegionsAddressAdipose tissueAffectAffinityAffinity ChromatographyAgingAmino AcidsAnimalsAtrophicBindingBiogenesisBiological AssayBiologyBrainCRISPR/Cas technologyCell ExtractsCell RespirationCellsCodon NucleotidesCultured CellsDataDefectDiabetes MellitusDiseaseElementsEnergy MetabolismExerciseExercise ToleranceFastingFatty acid glycerol estersGene ExpressionGenetic ModelsGenetic TranslationGluconeogenesisGlucose IntoleranceHormonesHumanIGF1 geneIn VitroInitiator CodonInsulinKRP proteinLinkLiverLiver MitochondriaMass Spectrum AnalysisMeasuresMessenger RNAMetabolic DiseasesMetabolismMethodsMitochondriaModelingMolecularMusMuscleMutationNerve DegenerationNeuromuscular DiseasesNon-Insulin-Dependent Diabetes MellitusNuclearObesityOligonucleotidesOpen Reading FramesParkinson DiseasePathogenesisPeptidesPhosphoproteinsPhysiologyPlasmidsPlayPost-Transcriptional RegulationPost-Translational Protein ProcessingProcessProtein IsoformsProteinsProto-Oncogene Proteins c-aktRegulationReportingResistanceRibosomesSeriesSet proteinSignal TransductionSkeletal MuscleSpecificitySystemTherapeuticThermogenesisTissuesTranscription CoactivatorTransfectionTranslationsUntranslated RegionsWorkexperimental studygenetic manipulationhuman diseaseimprovedin vivomouse modelnew therapeutic targetnovelnovel therapeuticsphosphoproteomicspreventprogramsresponsetranscription factortranslational impact
项目摘要
a. Abstract
The transcriptional coactivator PGC1α was discovered by my group in 1998. It functions as a dominant
regulator of mitochondrial biogenesis and oxidative metabolism by coactivating several nuclear transcription
factors that control the broad program of mitochondrial gene expression. PGC1α also has important tissue
specific functions, including control of adipose thermogenesis, the fasting response in liver, and mitochondrial
biology and resistance to atrophy in skeletal muscle. Mechanisms that activate thermogenesis in fat and
prevent atrophy in muscle are of enormous importance in human metabolic diseases such as diabetes and
obesity. Preliminary data illustrates a very robust and novel translational control of PGC1α mRNA in cultured
cells and in vivo; this mRNA translation is regulated by insulin and IGF1 signaling through AKT and
mTORC signaling. Moreover, it is negatively regulated by the presence of a very small open-reading
frame (uORF) just upstream of the codon that begins translation of the canonical PGC1α1 (the
canonical PGC1α isoform; hereafter just called PGC1α) mRNA. Loss of this uORF by deletion or mutation
increases the translation of PGC1α mRNA while ablating the insulin/IGF1 effect. This uORF encodes a
predicted peptide of 15 amino acids that is strongly conserved in all mammalian species. We will begin these
studies by using several mouse models using CRISPR technology (now created) which increase or decrease
expression of this uORF by altering the start codon of this small encoded peptide (Aim 1). Mice will be
analyzed for effects on key aspects of animal metabolism and physiology (Aim 2). These will include energy
expenditure and resistance to obesity-linked glucose intolerance via thermogenic fat, gluconeogenesis in liver
and exercise tolerance in muscle. Since skeletal muscle and its atrophy is a critical component of aging and an
important target of insulin action, we will examine atrophy in the muscle-selective models. Mechanisms by
which the 5' UTR and uORF control translation of PGC1α mRNA will be examined in cells by determining if the
uORF functions in cis or trans via 2 plasmid experiments and through use of molecular “toeprint” and “footprint”
assays (Aim 3). The presence of the uORF peptide in cell extracts will be determined by Mass Spectrometry
with the use of synthetic “heavy” peptides as key internal standards. Moreover, we will set up an in vitro
translation system and determine if this regulation can be recapitulated in vitro. Key regulatory components of
this system will be isolated by established affinity chromatography methods using oligonucleotides. Finally,
Aim 4 will address the critical question of how insulin/IGF1 signaling impacts this translational control through
quantitative phosphoprotein Mass Spectrometry in insulin treated cells. Phospho-proteomic analyses will also
be applied to components isolated through the affinity methods described above. Together, these data will
provide crucial perspectives and potential new therapeutic targets through which mitochondrial
biology, physiology and disease processes might be manipulated in in vivo settings.
A.摘要
转录辅活化子pGc1α是我的团队在1998年发现的。它作为一种支配性的
共同激活多个核转录调控线粒体生物发生和氧化代谢
控制线粒体基因表达的广泛程序的因素。Pgc1α也有重要的组织
特殊功能,包括控制脂肪产热、肝脏中的空腹反应和线粒体
生物学与骨骼肌萎缩的抵抗力。激活脂肪和脂肪产热的机制
防止肌肉萎缩对人类代谢性疾病如糖尿病和
肥胖。初步数据显示,在培养的α细胞中,PGC1mRNA的翻译控制非常强大和新颖
细胞和体内;这种mRNA翻译受胰岛素和IGF1信号调节,通过AKT和
MTORC信令。此外,它还受到一个非常小的开放读数的存在的负面调节
框架(UORF)位于开始翻译规范的pGc1α1(
典型的前列环素α亚型,以下简称前列环素α。该uORF因缺失或突变而丢失
在抑制胰岛素/α效应的同时,增加PGC1IGF1mRNA的翻译。这个uORF编码一个
预测的由15个氨基酸组成的多肽,在所有哺乳动物物种中都高度保守。我们将开始这些
通过使用CRISPR技术(现已创建)的几种小鼠模型进行研究,这些模型可以增加或减少
通过改变这个小编码肽的起始密码子来表达这个uORF(目的1)。老鼠会成为
分析对动物新陈代谢和生理的关键方面的影响(目标2)。这些将包括能源
肝脏中热源性脂肪、糖异生对肥胖相关糖耐量异常的消耗和抵抗
以及肌肉中的运动耐力。由于骨骼肌及其萎缩是衰老的关键组成部分,因此
作为胰岛素作用的重要靶点,我们将研究肌肉选择性模型中的萎缩。机制,由
将在细胞中检测PGC1mRNA的5‘非编码区和uORF控制翻译,方法是确定是否有α
UORF在顺式或反式中的作用通过两个质粒实验以及通过使用分子“脚印”和“足迹”来实现
化验(目标3)。细胞提取液中uORF多肽的存在将通过质谱学来确定
使用合成的“重”多肽作为关键的内部标准。此外,我们还将建立一个体外培养的
翻译系统,并确定这一调节是否可以在体外重述。关键的监管组成部分
该系统将通过已建立的使用寡核苷酸的亲和层析方法来分离。最后,
目标4将解决关键问题,即胰岛素/IGF1信号如何通过
胰岛素处理细胞中的定量磷蛋白质谱仪。磷酸蛋白质组学分析也将
应用于通过上述亲和方法隔离的组件。这些数据加在一起将
提供重要的视角和潜在的新的治疗靶点,通过线粒体
生物学、生理学和疾病过程可能在活体环境中被操纵。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRUCE M. SPIEGELMAN其他文献
BRUCE M. SPIEGELMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRUCE M. SPIEGELMAN', 18)}}的其他基金
Cellular and Biochemical Pathways of Adipose Metabolism and Thermogenesis
脂肪代谢和产热的细胞和生化途径
- 批准号:
10304182 - 财政年份:2019
- 资助金额:
$ 58.22万 - 项目类别:
Control of PGC1alpha Translation and Function
PGC1alpha 翻译和功能的控制
- 批准号:
10087918 - 财政年份:2019
- 资助金额:
$ 58.22万 - 项目类别:
PGC1alpha Pathway: Novel Intracellular and Extracellular Mediators
PGC1alpha 通路:新型细胞内和细胞外介质
- 批准号:
10732540 - 财政年份:2019
- 资助金额:
$ 58.22万 - 项目类别:
Cellular and Biochemical Pathways of Adipose Metabolism and Thermogenesis
脂肪代谢和产热的细胞和生化途径
- 批准号:
10540420 - 财政年份:2019
- 资助金额:
$ 58.22万 - 项目类别:
Identification of Novel Protein Kinases Dependent on Phosphocreatine Rather than ATP
依赖于磷酸肌酸而不是 ATP 的新型蛋白激酶的鉴定
- 批准号:
10227178 - 财政年份:2018
- 资助金额:
$ 58.22万 - 项目类别:
Identification of Novel Protein Kinases Dependent on Phosphocreatine Rather than ATP
依赖于磷酸肌酸而不是 ATP 的新型蛋白激酶的鉴定
- 批准号:
9979867 - 财政年份:2018
- 资助金额:
$ 58.22万 - 项目类别:
Identification of Novel Protein Kinases Dependent on Phosphocreatine Rather than ATP
依赖于磷酸肌酸而不是 ATP 的新型蛋白激酶的鉴定
- 批准号:
10457348 - 财政年份:2018
- 资助金额:
$ 58.22万 - 项目类别:
Regulation of Brown Fat: Toward New Therapy for Human Obesity
棕色脂肪的调节:人类肥胖的新疗法
- 批准号:
8045934 - 财政年份:2010
- 资助金额:
$ 58.22万 - 项目类别:
PGC-1 and Nuclear Receptors in Adaptive Thermogenesis
PGC-1 和核受体在适应性产热中的作用
- 批准号:
7998078 - 财政年份:2009
- 资助金额:
$ 58.22万 - 项目类别:
PGC-1a and the Energetics of Heart Function and Disease
PGC-1a 与心脏功能和疾病的能量学
- 批准号:
7258256 - 财政年份:2007
- 资助金额:
$ 58.22万 - 项目类别:
相似海外基金
Impact of alternative polyadenylation of 3'-untranslated regions in the PI3K/AKT cascade on microRNA
PI3K/AKT 级联中 3-非翻译区的替代多聚腺苷酸化对 microRNA 的影响
- 批准号:
573541-2022 - 财政年份:2022
- 资助金额:
$ 58.22万 - 项目类别:
University Undergraduate Student Research Awards
How do untranslated regions of cannabinoid receptor type 1 mRNA determine receptor subcellular localisation and function?
1 型大麻素受体 mRNA 的非翻译区如何决定受体亚细胞定位和功能?
- 批准号:
2744317 - 财政年份:2022
- 资助金额:
$ 58.22万 - 项目类别:
Studentship
MICA:Synthetic untranslated regions for direct delivery of therapeutic mRNAs
MICA:用于直接递送治疗性 mRNA 的合成非翻译区
- 批准号:
MR/V010948/1 - 财政年份:2021
- 资助金额:
$ 58.22万 - 项目类别:
Research Grant
Translational Control by 5'-untranslated regions
5-非翻译区域的翻译控制
- 批准号:
10019570 - 财政年份:2019
- 资助金额:
$ 58.22万 - 项目类别:
Translational Control by 5'-untranslated regions
5-非翻译区域的翻译控制
- 批准号:
10223370 - 财政年份:2019
- 资助金额:
$ 58.22万 - 项目类别:
Translational Control by 5'-untranslated regions
5-非翻译区域的翻译控制
- 批准号:
10455108 - 财政年份:2019
- 资助金额:
$ 58.22万 - 项目类别:
Synergistic microRNA-binding sites, and 3' untranslated regions: a dialogue of silence
协同的 microRNA 结合位点和 3 非翻译区:沉默的对话
- 批准号:
255762 - 财政年份:2012
- 资助金额:
$ 58.22万 - 项目类别:
Operating Grants
Analysis of long untranslated regions in Nipah virus genome
尼帕病毒基因组长非翻译区分析
- 批准号:
20790351 - 财政年份:2008
- 资助金额:
$ 58.22万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Search for mRNA elements involved in the compatibility between 5' untranslated regions and coding regions in chloroplast translation
寻找参与叶绿体翻译中 5 非翻译区和编码区之间兼容性的 mRNA 元件
- 批准号:
19370021 - 财政年份:2007
- 资助金额:
$ 58.22万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Post-transcriptional Regulation of PPAR-g Expression by 5'-Untranslated Regions
5-非翻译区对 PPAR-g 表达的转录后调控
- 批准号:
7131841 - 财政年份:2006
- 资助金额:
$ 58.22万 - 项目类别:














{{item.name}}会员




