Chromatin Regulation of Tissue Regeneration and Stem Cell Function
组织再生和干细胞功能的染色质调节
基本信息
- 批准号:10458701
- 负责人:
- 金额:$ 37.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdultAnimal ModelAnimalsBiochemicalBiological ProcessCellsChromatinCiliaComplexCuesCustomDataDevelopmentDevelopmental ProcessEmbryonic DevelopmentEnzymesEpithelialEssential GenesEventGene ExpressionGene Expression RegulationGene TargetingGenesGeneticGenetic TranscriptionGenomeGenomic approachGenomicsHeterogeneityInjuryLaboratory StudyLinkMLL geneMediator of activation proteinMethodsMolecularNatural regenerationOrganismPatternPlanariansPlatyhelminthsPluripotent Stem CellsPopulation HeterogeneityProcessProteinsRNA InterferenceRegenerative capacityRegulationResearchRoleSignal TransductionStructureTechniquesTestingTissue DifferentiationTissuesTranslatingWorkcell typecomparativecomparative genomicsin vivoinnovationinterestnovelregenerativeresponsesingle cell analysisstem cell functionstem cellstissue regenerationtraittranscription factor
项目摘要
Regeneration is a remarkable phenomenon that is both ubiquitous and mysterious; although many different
animals are capable of replacing damaged and/or lost structures, it is unclear how these regenerative species
maintain both the cellular stability required for tissue integrity and the cellular plasticity needed to reactivate
tissue development upon injury. Moreover, as regeneration is often induced by spontaneous and imprecise
tissue damage, how do cells translate broad and sudden signals into cell-type-specific transcriptional changes?
Genomic regulators such as transcription factors and chromatin-modifying enzymes work together to
instruct cell fate during developmental processes. Although there is substantial data describing how these
factors orchestrate embryogenesis, much less is known about how they are activated to induce regeneration.
My central hypothesis is that chromatin serves as a mediator between the signaling events that are triggered
by significant tissue loss and the cellular changes they induce to activate regeneration. To uncover the
fundamental molecular mechanisms underlying this process, my laboratory studies the planarian model of
animal regeneration. Planarians are free-living flatworms with incredible regenerative capacities. They are also
amenable to genetic perturbation through RNAi, easily dissociated for single cell analyses, and encode
chromatin modifying proteins with strong homology to those in other organisms. We are particularly interested
in how some planarian cell types respond to injury by activating specific, essential, regeneration genes, while
others activate an entirely different set of loci in response to the same injury. My lab uses multiple customized
methods to isolate specific planarian cell types, both differentiated and stem cells, in order to characterize the
chromatin state of these cell types before and after injury. We also leverage data showing that RNAi depletion
of the MLL1/2 chromatin enzyme in the planarian Schmidtea mediterranea leads to loss of cilia on its outer
epithelium. In addition, we have recently isolated and characterized a new planarian species that has a unique
cilia pattern on its outer epithelium, providing an exciting opportunity to use comparative genomic approaches
to identify specific genes that are linked to this particular trait. Combining all these approaches, we aim to
dissect the functional role and molecular signaling cues contributed by specific cell types during regeneration.
The outer epithelium and other differentiated tissues are essential for planarian regeneration in large part
because they signal to a population of heterogeneous multi and pluripotent stem cells that are maintained in
adult planarians. Because these stem cells must differentiate into all needed cell types in response to missing
tissue signals, it is not surprising that they are highly plastic and transcriptionally heterogeneous. Yet it is
unknown how they create and maintain this heterogeneity in vivo. We will test the hypothesis that a conserved
chromatin signature regulates this critical feature. These studies will uncover important mechanisms underlying
both regeneration and other biological processes that require dynamic gene regulation across complex tissues.
再生是一个显着的现象,既普遍存在,又神秘;虽然许多不同的
动物能够取代受损和/或失去的结构,目前还不清楚这些再生物种如何
保持组织完整性所需的细胞稳定性和重新激活所需的细胞可塑性
损伤后的组织发育。此外,由于再生往往是由自发的和不精确的
组织损伤时,细胞如何将广泛和突然的信号转化为细胞类型特异性的转录变化?
基因组调节因子如转录因子和染色质修饰酶共同作用,
在发育过程中指导细胞命运。尽管有大量数据描述了这些
尽管这些因子协调胚胎发生,但对它们如何被激活以诱导再生的了解要少得多。
我的中心假设是,染色质在被触发的信号事件之间起着中介作用
通过显著的组织损失和它们诱导的细胞变化来激活再生。将查清
作为这一过程的基础分子机制,我的实验室研究了
动物再生Planarians是自由生活的扁形虫,具有惊人的再生能力。他们也是
易于通过RNA干扰进行遗传干扰,易于分离用于单细胞分析,并编码
与其他生物体中的染色质修饰蛋白具有很强同源性的染色质修饰蛋白。我们特别感兴趣
一些真涡虫细胞类型如何通过激活特定的、必需的再生基因对损伤做出反应,
另一些则对同样的损伤激活完全不同的一组基因座。我的实验室使用多种定制的
分离特定的真涡虫细胞类型(分化细胞和干细胞)的方法,以表征真涡虫细胞的特征。
染色质状态的这些细胞类型之前和之后的损伤。我们还利用数据表明,
MLL 1/2染色质酶在涡虫Schmidtea medialacea中的表达导致其外部纤毛的丧失,
上皮此外,我们最近分离并鉴定了一种新的Planarian物种,
纤毛模式,提供了一个令人兴奋的机会,使用比较基因组方法
来鉴定与这种特殊性状相关的特定基因。结合所有这些方法,我们的目标是
剖析再生过程中特定细胞类型的功能作用和分子信号线索。
外上皮和其他分化的组织在很大程度上是涡虫再生所必需的
因为它们向维持在细胞中的异质性多能和多能干细胞群体发出信号,
成年真涡虫因为这些干细胞必须分化成所有需要的细胞类型,以应对缺失的细胞。
组织信号,它们是高度可塑性和转录异质性的,这并不奇怪。但它是
目前尚不清楚它们如何在体内产生和维持这种异质性。我们将检验一个保守的
染色质签名调节这一关键特征。这些研究将揭示潜在的重要机制
再生和其他生物过程都需要在复杂组织中进行动态基因调控。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth Marie Duncan其他文献
Elizabeth Marie Duncan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth Marie Duncan', 18)}}的其他基金
Chromatin Regulation of Tissue Regeneration and Stem Cell Function
组织再生和干细胞功能的染色质调节
- 批准号:
10650765 - 财政年份:2021
- 资助金额:
$ 37.87万 - 项目类别:
Chromatin Regulation of Tissue Regeneration and Stem Cell Function
组织再生和干细胞功能的染色质调节
- 批准号:
10274717 - 财政年份:2021
- 资助金额:
$ 37.87万 - 项目类别:
Chromatin Regulation of Tissue Regeneration and Stem Cell Function
组织再生和干细胞功能的染色质调节
- 批准号:
10810081 - 财政年份:2021
- 资助金额:
$ 37.87万 - 项目类别:
Identifying Fundamental Mechanisms that Mediate Resistance to Anti-Cancer Therapies
确定介导抗癌治疗耐药性的基本机制
- 批准号:
10311255 - 财政年份:2021
- 资助金额:
$ 37.87万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 37.87万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 37.87万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 37.87万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 37.87万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 37.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 37.87万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 37.87万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 37.87万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 37.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 37.87万 - 项目类别:
Grant-in-Aid for Early-Career Scientists