Chromatin Regulation of Tissue Regeneration and Stem Cell Function
组织再生和干细胞功能的染色质调节
基本信息
- 批准号:10810081
- 负责人:
- 金额:$ 1.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAnimal ModelAnimalsAutomobile DrivingBindingBiochemicalBiologicalBiomedical ResearchCellsChromatinCiliaCloningCompetenceComplexDNADataDevelopmentDevelopmental ProcessDissociationEnzymesEpitopesEssential GenesFamilyFunctional RegenerationGene ActivationGene ExpressionGenesGeneticGenetic TranscriptionGenomeGenomicsGoalsHeterogeneityHistone H3HistonesHomeostasisIndividualInjuryKnowledgeLaboratoriesLaboratory StudyLinkLysineMLL geneMLL2 geneMammalian CellMethodsMolecularMultienzyme ComplexesMultipotent Stem CellsMusNatural regenerationNeuronsOrganismPatternPharmaceutical PreparationsPhenotypePlanariansPlatyhelminthsPlayPluripotent Stem CellsPrincipal InvestigatorProcessProteinsRNA InterferenceRecreationRegenerative capacityRegulationResearchResearch PersonnelRetinaRoleSequence HomologySignal TransductionSomatic CellSpecificityTestingTimeTissuesTranscriptTranslatingWidthWorkcareercell fate specificationcell typeexperiencegenomic locushistone methylationhistone methyltransferasein vivoinjuredinsightnovelnull mutationoverexpressionprogramsprotein complexrecruitregenerativereplacement tissueresponsesingle cell analysisskillsstem cell functionstem cell populationstem cellstissue regenerationtooltranscription factorundergraduate student
项目摘要
Genomic regulators such as transcription factors and chromatin-modifying enzymes work together to
instruct cell fate during developmental processes, including both the routine cell turnover that occurs during
homeostasis and the major tissue replacement and repatterning that occurs during regeneration. One specific
group of chromatin-modifying complexes whose activity is strongly associated with gene expression is the
Set1/MLL family of histone methyltransferases. These enzyme complexes share a core of several essential
subunits, yet each particular enzyme (Set1, MLL1, MLL2, etc.) is functionally non-redundant in multicellular
animals i.e., individual null mutations are lethal. These data and others, including some from my laboratory,
indicate that each Set1/MLL complex regulates its own distinct set of genes. However, many of the molecular
and mechanistic details driving this biochemical and functional specificity remain unknown.
To uncover the fundamental molecular mechanisms underlying this process, my laboratory studies the
planarian model of animal regeneration. Planarians are free-living flatworms with incredible regenerative
capacities. They are also amenable to genetic perturbation through RNAi, easily dissociated for single cell
analyses, and encode chromatin modifying proteins with strong homology to those of other organisms. For
example, planarian Set1 and MLL1/2 enzymes show strong sequence homology to their mammalian
counterparts and my previous research has shown that loss of either enzyme leads to loss of their conserved
histone modifying activity, trimethylation of histone H3 at lysine 4 (H3K4me3). Moreover, we find that each
enzyme targets a specific set of genes that correlate with their phenotype after enzyme loss. Specifically, loss
of MLL1/2 through RNAi of its transcript leads to loss of H3K4me3 at highly conserved cilia genes as well as
loss of cilia and ciliated cells. However, we do not know how MLL1/2 targets these cilia genes specifically in
vivo. To begin identifying the molecular and mechanistic basis of this targeting, we first need to characterize
the planarian MLL1/2 complex in terms of its biochemical composition and function.
Notably, the phenotype induced in planarians after RNAi of a core Set1/MLL complex subunit, dpy-30,
may provide an opportunity to uncover the mechanism that distinguishes Set1 from MLL1/2 function in vivo. To
test this idea, I have recruited a promising undergraduate student to identify planarian DPY-30 interacting
proteins. He will begin by cloning the two planarian versions of DPY-30 with an epitope tag. He will then
express these planarian proteins in mammalian cells and ask if they stably interact with mammalian MLL1/2
proteins and form a functional histone methyltransferase complex. These studies will inform whether planarian
DPY-30 is required MLL1/2, but not Set1, assembly and/or function as a histone methyltransferase complex.
This project will also allow Ethan to gain the experience and skills needed to build a career in biomedical
research.
基因组调节因子如转录因子和染色质修饰酶共同作用
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elizabeth Marie Duncan其他文献
Elizabeth Marie Duncan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elizabeth Marie Duncan', 18)}}的其他基金
Chromatin Regulation of Tissue Regeneration and Stem Cell Function
组织再生和干细胞功能的染色质调节
- 批准号:
10650765 - 财政年份:2021
- 资助金额:
$ 1.05万 - 项目类别:
Chromatin Regulation of Tissue Regeneration and Stem Cell Function
组织再生和干细胞功能的染色质调节
- 批准号:
10274717 - 财政年份:2021
- 资助金额:
$ 1.05万 - 项目类别:
Chromatin Regulation of Tissue Regeneration and Stem Cell Function
组织再生和干细胞功能的染色质调节
- 批准号:
10458701 - 财政年份:2021
- 资助金额:
$ 1.05万 - 项目类别:
Identifying Fundamental Mechanisms that Mediate Resistance to Anti-Cancer Therapies
确定介导抗癌治疗耐药性的基本机制
- 批准号:
10311255 - 财政年份:2021
- 资助金额:
$ 1.05万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 1.05万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 1.05万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 1.05万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 1.05万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 1.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 1.05万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 1.05万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 1.05万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 1.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 1.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists