Nanohydrocyclones for scalable extracellular vesicle purification and drug loading

用于可扩展细胞外囊泡纯化和药物装载的纳米水力旋流器

基本信息

  • 批准号:
    10458751
  • 负责人:
  • 金额:
    $ 19.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Next-generation therapeutics based on extracellular vesicles (EVs) as biologically-derived drug carriers have emerged as a highly promising route to the treatment of a wide range of cardiovascular and respiratory diseases. Despite the broad interest in EV-based drug development, it is increasingly clear that existing methods for preparing therapeutic EVs suffer from a number of constraints that present a significant barrier to clinical translation. In addition to low throughput, long processing times, and labor-intensive operational steps, established separation methods suffer from poor separation efficiencies that result in vesicle loss, size bias, and co-elution of soluble proteins that contaminate the resulting nanovesicle drug. This latter challenge is of particular concern, as the presence of soluble proteins complicates interpretations of efficacy and safety. An additional issue is that while microRNAs (miRNAs) encapsulated within EVs represent a key component conferring therapeutic effect, the intrinsic concentration of miRNA in EVs is extremely low. As a result, effective EV therapies require that exogenous miRNA be loaded into the vesicles to increase potency. While a number of EV cargo loading techniques have been developed, many of these methods demand to introduction of external electrical or acoustic energy that can damage the vesicles and their cargo. Furthermore, existing EV separation and loading techniques require multiple processing steps that are not inherently scalable, increasing development cost and time, and presenting a practical challenge for moving EV therapeutics beyond the preclinical stage. In this R21 project, we propose a new scalable approach to EV separation and drug loading that is compatible with the needs for clinical translation, addressing a significant bottleneck in EV biomanufacturing and enabling a single-step streamlined workflow for the preparation of high potency EV therapeutics. The proposed technology consists of a single device integrating efficient size-based EV separation with drug loading into a scalable, automated, and self-contained process. The platform will leverage a miniature hydrocyclone technology previously developed by our team that has the potential to isolate EVs in the 30-150 nm range in a passive flow- through microfluidic chip. An array of hydrocyclones operating at high flow rates on the order of 1 mL/min will be combined with integrated microfluidic counterflow microdialysis elements to implement a proven pH-gradient- based loading method developed by our group to control EV cargo encapsulation. The scalable platform will enable in-line loading of purified EVs from any cell or biofluid source, using a simple workflow expected to significantly reduce therapeutic EV processing time and cost. The resulting system is further expected to improve vesicle purity and cargo loading efficiency, supporting the development and translation of a new class of EV therapeutics with the potential to impact treatment of a broad range of cardiovascular and respiratory diseases.
项目摘要 基于细胞外囊泡(EV)作为生物衍生的药物载体的下一代治疗剂具有 成为治疗多种心血管和呼吸道疾病的一种非常有前途的途径。 尽管对基于EV的药物开发有着广泛的兴趣,但越来越清楚的是,现有的用于药物开发的方法并不适用于基于EV的药物。 制备治疗性EV受到许多限制,这些限制对临床应用构成显著障碍。 翻译.除了低通量、长处理时间和劳动密集型操作步骤之外, 已建立的分离方法存在分离效率差的问题,这导致囊泡损失、尺寸偏差, 污染所得纳米囊泡药物的可溶性蛋白质的共洗脱。后一项挑战尤其重要, 这是一个令人担忧的问题,因为可溶性蛋白的存在使疗效和安全性的解释复杂化。额外 问题是,虽然封装在EV中的microRNA(miRNAs)代表了赋予EV 在治疗效果方面,EV中miRNA的固有浓度极低。因此,有效的EV疗法 需要将外源性miRNA加载到囊泡中以增加效力。虽然一些电动汽车货物 加载技术已经发展,其中许多方法需要引入外部电 或声能,可以破坏囊泡和它们的货物。此外,现有的EV分离和 加载技术需要多个处理步骤,这些处理步骤本身不是可伸缩的,增加了开发 成本和时间,并提出了一个实际的挑战,超越临床前阶段的EV治疗。在 在R21项目中,我们提出了一种新的可扩展的EV分离和药物装载方法, 临床转化的需求,解决电动汽车生物制造的重大瓶颈, 用于制备高效EV治疗剂的单步简化工作流程。所提出的技术 包括一个单一的设备,将有效的基于尺寸的EV分离与药物装载集成到一个可扩展的, 自动化和独立的过程。该平台将利用微型水力旋流器技术 我们的团队以前开发的,有可能在被动流中隔离30-150 nm范围内的EV- 通过微流控芯片在大约1 mL/min的高流速下操作的水力旋流器阵列将被 与集成的微流体逆流微透析元件相结合,以实现经过验证的pH梯度- 基于我们的小组开发的装载方法来控制EV货物封装。可扩展平台将 能够使用简单的工作流程从任何细胞或生物流体来源在线加载纯化的EV, 显著减少治疗EV处理时间和成本。由此产生的系统有望进一步完善 囊泡纯度和货物装载效率,支持新型EV的开发和转化 这些药物可能影响广泛的心血管和呼吸系统疾病的治疗。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Don L DeVoe其他文献

Don L DeVoe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Don L DeVoe', 18)}}的其他基金

Elucidating Airborne SARS-CoV-2 Infectivity at Single Aerosol Resolution
在单一气溶胶分辨率下阐明空气传播的 SARS-CoV-2 感染性
  • 批准号:
    10239915
  • 财政年份:
    2022
  • 资助金额:
    $ 19.14万
  • 项目类别:
Microcyclone arrays for high resolution bioaerosol fractionation and viable virus collection
用于高分辨率生物气溶胶分级和活病毒收集的微旋风阵列
  • 批准号:
    10593436
  • 财政年份:
    2022
  • 资助金额:
    $ 19.14万
  • 项目类别:
Advanced Bioaerosols Technology Core
先进的生物气溶胶技术核心
  • 批准号:
    10645163
  • 财政年份:
    2021
  • 资助金额:
    $ 19.14万
  • 项目类别:
A rapid, automated system for bacteria profiling of intra-abdominal infections
一种快速、自动化的腹内感染细菌分析系统
  • 批准号:
    10535472
  • 财政年份:
    2021
  • 资助金额:
    $ 19.14万
  • 项目类别:
Advanced Bioaerosols Technology Core
先进的生物气溶胶技术核心
  • 批准号:
    10260848
  • 财政年份:
    2021
  • 资助金额:
    $ 19.14万
  • 项目类别:
Advanced Bioaerosols Technology Core
先进的生物气溶胶技术核心
  • 批准号:
    10471984
  • 财政年份:
    2021
  • 资助金额:
    $ 19.14万
  • 项目类别:
Nanohydrocyclones for scalable extracellular vesicle purification and drug loading
用于可扩展细胞外囊泡纯化和药物装载的纳米水力旋流器
  • 批准号:
    10288742
  • 财政年份:
    2021
  • 资助金额:
    $ 19.14万
  • 项目类别:
A rapid, automated system for bacteria profiling of intra-abdominal infections
一种快速、自动化的腹内感染细菌分析系统
  • 批准号:
    10211909
  • 财政年份:
    2021
  • 资助金额:
    $ 19.14万
  • 项目类别:
Enabling exosome biomarker development via digitized single vesicle analysis
通过数字化单囊泡分析实现外泌体生物标志物的开发
  • 批准号:
    10359052
  • 财政年份:
    2019
  • 资助金额:
    $ 19.14万
  • 项目类别:
Enabling exosome biomarker development via digitized single vesicle analysis
通过数字化单囊泡分析实现外泌体生物标志物的开发
  • 批准号:
    10092199
  • 财政年份:
    2019
  • 资助金额:
    $ 19.14万
  • 项目类别:

相似海外基金

Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
  • 批准号:
    10078324
  • 财政年份:
    2023
  • 资助金额:
    $ 19.14万
  • 项目类别:
    BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
  • 批准号:
    2308300
  • 财政年份:
    2023
  • 资助金额:
    $ 19.14万
  • 项目类别:
    Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
  • 批准号:
    10033989
  • 财政年份:
    2023
  • 资助金额:
    $ 19.14万
  • 项目类别:
    Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
  • 批准号:
    23K16913
  • 财政年份:
    2023
  • 资助金额:
    $ 19.14万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
  • 批准号:
    10582051
  • 财政年份:
    2023
  • 资助金额:
    $ 19.14万
  • 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
  • 批准号:
    10602958
  • 财政年份:
    2023
  • 资助金额:
    $ 19.14万
  • 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
  • 批准号:
    2889921
  • 财政年份:
    2023
  • 资助金额:
    $ 19.14万
  • 项目类别:
    Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2343847
  • 财政年份:
    2023
  • 资助金额:
    $ 19.14万
  • 项目类别:
    Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
  • 批准号:
    DGECR-2022-00019
  • 财政年份:
    2022
  • 资助金额:
    $ 19.14万
  • 项目类别:
    Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2141275
  • 财政年份:
    2022
  • 资助金额:
    $ 19.14万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了