Microcyclone arrays for high resolution bioaerosol fractionation and viable virus collection
用于高分辨率生物气溶胶分级和活病毒收集的微旋风阵列
基本信息
- 批准号:10593436
- 负责人:
- 金额:$ 19.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-22 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAerosolsAirAlveolusBacteriaBiological AvailabilityBreathingBypassClinical ResearchCollectionComplexCoughingCoupledDevelopmentDevicesDiameterDimensionsDiseaseDisease modelElementsEnvironmentEvaluationExhalationExhibitsFractionationFungal SporesFutureGoalsHourHybridsHydration statusHydrogelsImmobilizationIndividualInfectionInfluenzaInhalationLaboratoriesLungMicrospheresModelingMoldsMucous body substanceParticle SizePatternPenetrationPerformancePersonsPlant ResinsPlaque AssayPolystyrenesProcessQuantitative Reverse Transcriptase PCRResolutionRespiratory DiseaseRespiratory ProcessRiskSamplingSeriesSneezingStreamStructureSystemTechniquesTechnologyValidationViralVirusaerosolizeddesigndisease transmissionfabricationimprovedinfluenza infectioninfluenzavirusinnovationinstrumentlithographymanufacturemeteroperationparticlepathogenresidencerespiratory virussample collectiontechnology validationtooltransmission processviral transmission
项目摘要
PROJECT SUMMARY
Our objective is to develop a multi-stage microscale cyclone technology that will serve as an efficient and scalable
platform for bioaerosol fractionation, enabling more effective studies of fundamental and applied viral aerobiology. The
microcyclones will be designed to isolate selected aerosol size fractions collected from exhaled breath samples,
enabling the distribution of respiratory virus within these samples to be evaluated with high size resolution. Significantly,
the technology will be designed to overcome the limitations of existing aerobiological instruments by enhancing the
dynamic size range, maximum number of collected fractions, resolution, throughput, and bioefficiency. The platform
will take advantage of a high resolution stereolithography-based 3d printing technique to pattern large arrays of
complex microcyclone structures in a monolithic substrate, with multiple arrays placed in series to allow selected
aerosol size ranges to be isolated from the sample flow. The system will further support the integration of a hydrogel
layer within each microcyclone array to allow the capture of live virus for infectivity studies. The microcyclone arrays
will be combined with an established exhaled breath collection system and employed to study the distribution of
influenza virus from infected subjects. To support these goals, individual microcyclone elements will be designed,
fabricated, characterized, and optimized for isolating at least five distinct aerosol size fractions ranging from 200 nm to
10 µm, followed by the development of full microcyclone arrays integrating hundreds of individual separation elements
in a single device. A set of cascaded arrays will be assembled into a reusable cartridge to enable collection of all target
fractions within a single integrated unit, and the resulting cartridge will be interfaced with the existing system for high-
volume exhaled breath collection (the G-II sampler developed in the Milton laboratory). The integrated instrument will
be used to collect exhaled breath samples from at least 15 individuals with active influenza infection for the evaluation
of virus distribution across all size fractions. The study results are expected to validate the technology as a powerful
tool for enhancing our understanding of aerobiology and improving modeling, risk analysis, and mitigation strategies
for a wide range of airborne diseases. Successful completion of these aims will offer a clear view of the potential of the
microcyclone array technology for collection and high resolution fractionation of bioaerosols from exhaled breath
samples. For future steps we envision optimizing bioefficiency of the technology to support culture of collected virus,
scaling the arrays to support environmental sampling at higher flow rates, and extending application of the technology
to the characterization of aerosolized bacteria and fungal spores.
项目摘要
我们的目标是开发一种多级微尺度旋风分离器技术,
生物气溶胶分离平台,使基础和应用病毒空气生物学的研究更加有效。的
微旋风分离器将被设计成分离从呼出气样品收集的选定的气溶胶尺寸级分,
使得能够以高尺寸分辨率评估这些样品中呼吸道病毒的分布。重要的是,
该技术的设计目的是通过增强现有空气生物学仪器的局限性,
动态尺寸范围、收集的级分的最大数量、分辨率、通量和生物效率。平台
将利用基于高分辨率立体光刻的3D打印技术来图案化大阵列,
在单片基底中的复杂微旋流器结构,具有串联放置的多个阵列,以允许选择
气溶胶尺寸范围从样品流中分离出来。该系统将进一步支持水凝胶的整合
在每个微旋流器阵列内设置一层,以捕获活病毒用于感染性研究。微旋流器阵列
将与已建立的呼出气收集系统相结合,并用于研究
流感病毒从受感染的受试者。为了支持这些目标,将设计单独的微旋流器元件,
制造、表征和优化用于分离至少五种不同的气溶胶尺寸级分,
10 µm,随后开发了集成数百个独立分离元件的完整微旋流器阵列
在单个设备中。一组级联阵列将组装到可重复使用的盒中,以收集所有目标
在一个单一的集成单元内的馏分,并产生的墨盒将与现有的系统接口,
呼出气体积采集(米尔顿实验室开发的G-II采样器)。综合文书将
用于采集至少15名活动性流感感染者的呼出气样本,以进行评估
病毒在所有粒级中的分布。研究结果预计将验证该技术作为一种强大的
一种提高我们对空气生物学的理解并改进建模、风险分析和缓解策略的工具
一系列的空气传播疾病。成功地完成这些目标将使人们清楚地看到
从呼出气中收集和高分辨率分离生物气溶胶的微旋流器阵列技术
样品对于未来的步骤,我们设想优化该技术的生物效率,以支持收集的病毒的培养,
扩大阵列的规模,以支持更高流速的环境采样,并扩大该技术的应用
气溶胶化的细菌和真菌孢子的表征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Don L DeVoe其他文献
Don L DeVoe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Don L DeVoe', 18)}}的其他基金
Elucidating Airborne SARS-CoV-2 Infectivity at Single Aerosol Resolution
在单一气溶胶分辨率下阐明空气传播的 SARS-CoV-2 感染性
- 批准号:
10239915 - 财政年份:2022
- 资助金额:
$ 19.43万 - 项目类别:
Nanohydrocyclones for scalable extracellular vesicle purification and drug loading
用于可扩展细胞外囊泡纯化和药物装载的纳米水力旋流器
- 批准号:
10458751 - 财政年份:2021
- 资助金额:
$ 19.43万 - 项目类别:
A rapid, automated system for bacteria profiling of intra-abdominal infections
一种快速、自动化的腹内感染细菌分析系统
- 批准号:
10535472 - 财政年份:2021
- 资助金额:
$ 19.43万 - 项目类别:
Nanohydrocyclones for scalable extracellular vesicle purification and drug loading
用于可扩展细胞外囊泡纯化和药物装载的纳米水力旋流器
- 批准号:
10288742 - 财政年份:2021
- 资助金额:
$ 19.43万 - 项目类别:
A rapid, automated system for bacteria profiling of intra-abdominal infections
一种快速、自动化的腹内感染细菌分析系统
- 批准号:
10211909 - 财政年份:2021
- 资助金额:
$ 19.43万 - 项目类别:
Enabling exosome biomarker development via digitized single vesicle analysis
通过数字化单囊泡分析实现外泌体生物标志物的开发
- 批准号:
10359052 - 财政年份:2019
- 资助金额:
$ 19.43万 - 项目类别:
Enabling exosome biomarker development via digitized single vesicle analysis
通过数字化单囊泡分析实现外泌体生物标志物的开发
- 批准号:
10092199 - 财政年份:2019
- 资助金额:
$ 19.43万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 19.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 19.43万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 19.43万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 19.43万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 19.43万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 19.43万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 19.43万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 19.43万 - 项目类别:
Standard Grant














{{item.name}}会员




