TMPRSS2 as a potential target for treatments of COVID-19 and respiratory infectious viruses in lung

TMPRSS2 作为治疗 COVID-19 和肺部呼吸道感染病毒的潜在靶点

基本信息

  • 批准号:
    10454033
  • 负责人:
  • 金额:
    $ 70.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary In early 2020, a new virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), generated headlines due to its unprecedented rate of transmission. SARS-CoV-2 caused the first reported cases of coronavirus disease 2019 (COVID-19) in December 2019 and continues to spread worldwide. As a family of RNA viruses, SARS-CoV-2 is prone to mutate at a rate up to a million times faster than its hosts1,2. These rapid genomic alterations have already generated highly transmissible variants, and have raised concerns that the virus will evade vaccine-induced immunity. In addition, a large percentage of the global population remains unvaccinated, due to the challenges of production and mass distribution, vaccine hesitancy, and pending approval status for patients under age 12. Therefore, an effective antiviral has the potential to relieve suffering for millions—not only helping individual patients recover and reducing the number of deaths, but also limiting the number of positive carriers and thereby curbing the spread of the pandemic. This proposal aims to develop an efficient antiviral to impede the virus’ entry into cells, specifically into lung alveolar type II (AT2) cells, the stem cells of the distal lung. Thanks to recent studies, we know which “door” (a receptor called ACE2) and “key” (a protease called TMPRSS2) the virus uses to enter cells. Our goal is to remove the key so the virus cannot open the door and enter host cells. We will use a conventional air-liquid interface (ALI) culture that is representative of the in vivo airway and a recently developed 3-dimensional (3D) in vitro lung organoid model that recapitulates many aspects of lung structure and the cellular environment and that has been used to study respiratory viruses, including SARS-CoV-2. These systems represent tissues better than cell lines, but offers the benefit of being less complex than tissue explants or animal models. In addition, we have generated a panel of highly sensitive and specific mouse monoclonal antibodies (mAbs) directed against TMPRSS2. In preliminary studies, the lead TMPRSS2 mAb, AL20, shows no signs of cytotoxicity with a trend towards inhibition of SARS-CoV-2 pseudovirus entry in cell lines and in lung organoids. Furthermore, we have identified at least two serine protease inhibitors (serpins) that form complexes with TMPRSS2, and the presence of these complexes is inversely correlated with the SARS-CoV-2 infection rate. These findings lead to our hypothesis that targeting TMPRSS2 can inhibit SARS-CoV-2 viral entry and spread. To test our hypothesis, we will first test the efficacy of AL20 for blocking the entry of SARS-CoV-2 into AT2 cells in lung organoids and in airway epithelial cells in ALI cultures, and elucidate the underlying mechanisms. We will then evaluate the effects of serpins on TMPRSS2 activity and SARS-CoV-2 viral entry and spread. Finally, to explore the feasibility of advancing AL20 to human trials, we will test humanized AL20 in a SARS-CoV-2 hamster model. Syrian golden hamsters are naturally susceptible to SARS-CoV-2 infection that recapitulates the clinical, virological, histopathological, and immunological characteristics of human disease, enabling study of its pathogenesis, transmission, and passive immunization effect. Transgenic human ACE2 is not required for SARS-CoV-2 infection, ensuring that the cell types infected are highly relevant. These studies will provide critical insights into the mechanisms whereby TMPRSS2 regulates SARS-CoV-2 entry, and suggest potential therapeutic candidates against COVID-19. The proposed work has the potential to impact the lives of millions of individuals affected by COVID-19 and other respiratory viruses, such as influenza A, that use TMPRSS2 to enter cells.
项目概要 2020 年初,一种新病毒,严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2),由于以下原因而成为头条新闻: 其传播速度前所未有。 SARS-CoV-2 引起首例报告的 2019 年冠状病毒病 (COVID-19) 病例 2019 年 12 月,并继续在全球范围内传播。作为 RNA 病毒家族,SARS-CoV-2 很容易发生突变 比其主机快一百万倍1,2。这些快速的基因组改变已经产生了高度传播的 变种,并引发人们担心该病毒会逃避疫苗诱导的免疫力。此外,很大一部分 由于生产和大规模分发方面的挑战、疫苗犹豫不决、 12 岁以下患者的等待批准状态。因此,有效的抗病毒药物有可能减轻痛苦 为数百万人提供帮助——不仅帮助个别患者康复并减少死亡人数,还限制了死亡人数 积极的携带者,从而遏制大流行的传播。 该提案旨在开发一种有效的抗病毒药物,以阻止病毒进入细胞,特别是肺泡型细胞 II (AT2) 细胞,远端肺的干细胞。得益于最近的研究,我们知道了哪个“门”(一种名为 ACE2 的受体)和 病毒用来进入细胞的“关键”(一种名为 TMPRSS2 的蛋白酶)。我们的目标是移除钥匙,这样病毒就无法打开 门并进入宿主细胞。我们将使用代表体内的传统气液界面 (ALI) 培养物 气道和最近开发的 3 维 (3D) 体外肺类器官模型,概括了肺的许多方面 结构和细胞环境,并已用于研究呼吸道病毒,包括 SARS-CoV-2。这些 系统比细胞系更好地代表组织,但具有比组织外植体或动物更简单的优点 模型。此外,我们还生成了一组高度敏感和特异性的小鼠单克隆抗体 (mAb) 针对 TMPRSS2。在初步研究中,领先的 TMPRSS2 mAb AL20 没有显示出细胞毒性的迹象,并且呈趋势 抑制 SARS-CoV-2 假病毒进入细胞系和肺类器官。此外,我们还确定了 至少有两种丝氨酸蛋白酶抑制剂 (serpin) 与 TMPRSS2 形成复合物,并且这些复合物的存在 与 SARS-CoV-2 感染率呈负相关。这些发现得出我们的假设:靶向 TMPRSS2 可以 抑制 SARS-CoV-2 病毒进入和传播。 为了验证我们的假设,我们将首先测试 AL20 阻止 SARS-CoV-2 进入肺 AT2 细胞的功效 类器官和 ALI 培养物中的气道上皮细胞,并阐明其潜在机制。然后我们将评估 丝氨酸蛋白酶抑制剂对 TMPRSS2 活性和 SARS-CoV-2 病毒进入和传播的影响。最后探讨推进的可行性 AL20 到人体试验,我们将在 SARS-CoV-2 仓鼠模型中测试人源化 AL20。叙利亚金仓鼠自然是 易受 SARS-CoV-2 感染,概括了临床、病毒学、组织病理学和免疫学 人类疾病的特征,有助于研究其发病机制、传播和被动免疫效果。 SARS-CoV-2 感染不需要转基因人 ACE2,从而确保感染的细胞类型高度相关。 这些研究将为 TMPRSS2 调节 SARS-CoV-2 进入的机制提供重要见解,并表明 针对 COVID-19 的潜在治疗候选药物。拟议的工作有可能影响数百万人的生活 受 COVID-19 和其他呼吸道病毒(例如甲型流感病毒)影响的个体,这些病毒使用 TMPRSS2 进入细胞。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ya-Wen Chen其他文献

Ya-Wen Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ya-Wen Chen', 18)}}的其他基金

TMPRSS2 as a potential target for treatments of COVID-19 and respiratory infectious viruses in lung
TMPRSS2 作为治疗 COVID-19 和肺部呼吸道感染病毒的潜在靶点
  • 批准号:
    10280827
  • 财政年份:
    2021
  • 资助金额:
    $ 70.55万
  • 项目类别:

相似海外基金

REU Site: Design, Create, and Innovate 3-Dimensional User Interfaces to Improve Human Sensory and Motor Performance in Virtual Environments (HUMANS MOVE)
REU 网站:设计、创建和创新 3 维用户界面,以提高虚拟环境中的人类感官和运动表现 (HUMANS MOVE)
  • 批准号:
    2349771
  • 财政年份:
    2024
  • 资助金额:
    $ 70.55万
  • 项目类别:
    Standard Grant
CAREER: Atomic-level understanding of stability and transition kinetics of 3-dimensional interfaces under irradiation
职业:对辐照下 3 维界面的稳定性和转变动力学的原子水平理解
  • 批准号:
    2340085
  • 财政年份:
    2024
  • 资助金额:
    $ 70.55万
  • 项目类别:
    Continuing Grant
Artificial fabrication of 3-dimensional noncollinear magnetic order and magnetization manipulation by spin torque
三维非共线磁序的人工制造和自旋转矩磁化操纵
  • 批准号:
    23H00232
  • 财政年份:
    2023
  • 资助金额:
    $ 70.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Understanding of 3-dimensional seismic behavior of RC frame high-speed railway/highway viaducts using FE analysis
使用有限元分析了解 RC 框架高速铁路/公路高架桥的 3 维抗震性能
  • 批准号:
    23H01489
  • 财政年份:
    2023
  • 资助金额:
    $ 70.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
  • 批准号:
    10736961
  • 财政年份:
    2023
  • 资助金额:
    $ 70.55万
  • 项目类别:
The 3-dimensional nest of the honey bee: organization, development, and impact on colony function
蜜蜂的 3 维巢穴:组织、发育及其对蜂群功能的影响
  • 批准号:
    2216835
  • 财政年份:
    2023
  • 资助金额:
    $ 70.55万
  • 项目类别:
    Standard Grant
Research on high-density 3-dimensional polymer optical waveguide device for photonics-electronics convergence
光电子融合高密度三维聚合物光波导器件研究
  • 批准号:
    23H01882
  • 财政年份:
    2023
  • 资助金额:
    $ 70.55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Scaff-Net: 3 Dimensional multiphoton polymerisation printed scaffolds for medium throughput recording from stem cell derived human cortical networks.
Scaff-Net:3 维多光子聚合打印支架,用于从干细胞衍生的人类皮质网络进行中等通量记录。
  • 批准号:
    EP/X018385/1
  • 财政年份:
    2023
  • 资助金额:
    $ 70.55万
  • 项目类别:
    Research Grant
3-dimensional prompt gamma imaging for online proton beam dose verification
用于在线质子束剂量验证的 3 维瞬发伽马成像
  • 批准号:
    10635210
  • 财政年份:
    2023
  • 资助金额:
    $ 70.55万
  • 项目类别:
Equipment: MRI: Track 1 Acquisition of a 3-Dimensional Nanolithography Instrument
设备:MRI:轨道 1 获取 3 维纳米光刻仪器
  • 批准号:
    2320636
  • 财政年份:
    2023
  • 资助金额:
    $ 70.55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了