TMPRSS2 as a potential target for treatments of COVID-19 and respiratory infectious viruses in lung
TMPRSS2 作为治疗 COVID-19 和肺部呼吸道感染病毒的潜在靶点
基本信息
- 批准号:10454033
- 负责人:
- 金额:$ 70.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoV3-DimensionalACE2AddressAgeAirAnimal ModelAntibodiesApoptosisBindingBinding ProteinsCOVID-19COVID-19 impactCOVID-19 susceptibilityCOVID-19 treatmentCase StudyCell LineCell SurvivalCell surfaceCellsCessation of lifeClinicalComplexDNA Sequence AlterationDataDiseaseDistalEndocytosisEnsureEnvironmentEpithelial CellsFamilyGoalsHamstersHumanHuman CharacteristicsImmunologicsIn VitroIndividualInfectionInflammationInfluenza A virusLeadLiquid substanceLungMediatingMesocricetus auratusModelingMolecularMonoclonal AntibodiesMusMutateOrganoidsPassive ImmunizationPathogenesisPatientsPeptide HydrolasesPharmaceutical PreparationsPopulationProcessProductionProteinsPulmonary PathologyRNA VirusesRegulationResistanceRoleSARS coronavirusSARS-CoV-2 entry inhibitorSARS-CoV-2 infectionSARS-CoV-2 inhibitorSARS-CoV-2 spike proteinScientistSerine Proteinase InhibitorsSerpinsStructureSumSystemTMPRSS2 geneTestingTimeTissuesTransgenic OrganismsVaccinesVariantViralVirusVirus DiseasesWorkairway epitheliumalveolar type II cellcell typecytotoxicitydosagedrug candidateefficacy evaluationefficacy testinghuman diseasehuman pluripotent stem cellin vivoindividual patientinfection rateinhibiting antibodyinhibitorinsightlung injuryneutralizing antibodynovelnovel therapeutic interventionnovel therapeuticspandemic diseasepreventreceptorrespiratoryrespiratory virusresponsestem cell differentiationstem cellstherapeutic candidatetransmission processtrendunvaccinatedvaccine hesitancyvaccine-induced immunityviral entry inhibitor
项目摘要
Project Summary
In early 2020, a new virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), generated headlines due to
its unprecedented rate of transmission. SARS-CoV-2 caused the first reported cases of coronavirus disease 2019 (COVID-19)
in December 2019 and continues to spread worldwide. As a family of RNA viruses, SARS-CoV-2 is prone to mutate at a rate
up to a million times faster than its hosts1,2. These rapid genomic alterations have already generated highly transmissible
variants, and have raised concerns that the virus will evade vaccine-induced immunity. In addition, a large percentage of
the global population remains unvaccinated, due to the challenges of production and mass distribution, vaccine hesitancy,
and pending approval status for patients under age 12. Therefore, an effective antiviral has the potential to relieve suffering
for millions—not only helping individual patients recover and reducing the number of deaths, but also limiting the number
of positive carriers and thereby curbing the spread of the pandemic.
This proposal aims to develop an efficient antiviral to impede the virus’ entry into cells, specifically into lung alveolar type
II (AT2) cells, the stem cells of the distal lung. Thanks to recent studies, we know which “door” (a receptor called ACE2) and
“key” (a protease called TMPRSS2) the virus uses to enter cells. Our goal is to remove the key so the virus cannot open the
door and enter host cells. We will use a conventional air-liquid interface (ALI) culture that is representative of the in vivo
airway and a recently developed 3-dimensional (3D) in vitro lung organoid model that recapitulates many aspects of lung
structure and the cellular environment and that has been used to study respiratory viruses, including SARS-CoV-2. These
systems represent tissues better than cell lines, but offers the benefit of being less complex than tissue explants or animal
models. In addition, we have generated a panel of highly sensitive and specific mouse monoclonal antibodies (mAbs)
directed against TMPRSS2. In preliminary studies, the lead TMPRSS2 mAb, AL20, shows no signs of cytotoxicity with a trend
towards inhibition of SARS-CoV-2 pseudovirus entry in cell lines and in lung organoids. Furthermore, we have identified at
least two serine protease inhibitors (serpins) that form complexes with TMPRSS2, and the presence of these complexes is
inversely correlated with the SARS-CoV-2 infection rate. These findings lead to our hypothesis that targeting TMPRSS2 can
inhibit SARS-CoV-2 viral entry and spread.
To test our hypothesis, we will first test the efficacy of AL20 for blocking the entry of SARS-CoV-2 into AT2 cells in lung
organoids and in airway epithelial cells in ALI cultures, and elucidate the underlying mechanisms. We will then evaluate the
effects of serpins on TMPRSS2 activity and SARS-CoV-2 viral entry and spread. Finally, to explore the feasibility of advancing
AL20 to human trials, we will test humanized AL20 in a SARS-CoV-2 hamster model. Syrian golden hamsters are naturally
susceptible to SARS-CoV-2 infection that recapitulates the clinical, virological, histopathological, and immunological
characteristics of human disease, enabling study of its pathogenesis, transmission, and passive immunization effect.
Transgenic human ACE2 is not required for SARS-CoV-2 infection, ensuring that the cell types infected are highly relevant.
These studies will provide critical insights into the mechanisms whereby TMPRSS2 regulates SARS-CoV-2 entry, and suggest
potential therapeutic candidates against COVID-19. The proposed work has the potential to impact the lives of millions of
individuals affected by COVID-19 and other respiratory viruses, such as influenza A, that use TMPRSS2 to enter cells.
项目摘要
2020年初,一种新病毒严重急性呼吸道综合征冠状病毒2(SARS-CoV-2)成为头条新闻,原因是
前所未有的传播速度SARS-CoV-2导致2019年首次报告的冠状病毒病病例(COVID-19)
2019年12月,并继续在全球范围内蔓延。作为RNA病毒的一个家族,SARS-CoV-2易于以
比主机快一百万倍1,2.这些快速的基因组改变已经产生了高度可传播的
变异,并引起了人们对该病毒将逃避疫苗诱导的免疫的担忧。此外,
由于生产和大规模分配的挑战,疫苗犹豫,
以及12岁以下患者的待批准状态。因此,有效的抗病毒药物有可能减轻痛苦
不仅帮助个别患者康复,减少死亡人数,
积极的携带者,从而遏制大流行病的传播。
该提案旨在开发一种有效的抗病毒药物,以阻止病毒进入细胞,特别是进入肺泡型
II(AT 2)细胞,远端肺的干细胞。多亏了最近的研究,我们知道了哪扇门(一种叫做ACE 2的受体),
“钥匙”(一种称为TMPRSS 2的蛋白酶)是病毒进入细胞的关键。我们的目标是删除密钥,这样病毒就无法打开
进入宿主细胞。我们将使用传统的空气-液体界面(ALI)培养,其代表了体内的
气道和最近开发的3维(3D)体外肺类器官模型,该模型概括了肺的许多方面,
结构和细胞环境,并已用于研究呼吸道病毒,包括SARS-CoV-2。这些
系统比细胞系更好地代表组织,但是提供了比组织外植体或动物移植物更不复杂的益处。
模型此外,我们已经产生了一组高度敏感和特异性的小鼠单克隆抗体(mAb),
针对TMPRSS 2。在初步研究中,先导TMPRSS 2 mAb AL 20未显示出细胞毒性迹象,
抑制SARS-CoV-2假病毒进入细胞系和肺类器官。此外,我们还发现,
至少两种与TMPRSS 2形成复合物的丝氨酸蛋白酶抑制剂(丝氨酸蛋白酶抑制剂),并且这些复合物的存在是
与SARS-CoV-2感染率呈负相关。这些发现使我们假设靶向TMPRSS 2可以
抑制SARS-CoV-2病毒进入和传播。
为了验证我们的假设,我们将首先测试AL 20阻断SARS-CoV-2进入肺中AT 2细胞的功效
类器官和气道上皮细胞在ALI培养,并阐明了潜在的机制。然后我们将评估
丝氨酸蛋白酶抑制剂对TMPRSS 2活性和SARS-CoV-2病毒进入和传播的影响。最后,探讨推进的可行性
AL 20到人体试验,我们将在SARS-CoV-2仓鼠模型中测试人源化AL 20。叙利亚金仓鼠自然是
对SARS-CoV-2感染易感,这概括了临床、病毒学、组织病理学和免疫学
人类疾病的特点,使其发病机制,传播和被动免疫效果的研究。
SARS-CoV-2感染不需要转基因人ACE 2,确保感染的细胞类型高度相关。
这些研究将为TMPRSS 2调节SARS-CoV-2进入的机制提供重要的见解,并建议
潜在的抗COVID-19治疗候选物。拟议的工作有可能影响数百万人的生活,
受COVID-19和其他呼吸道病毒(如甲型流感)影响的个体使用TMPRSS 2进入细胞。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ya-Wen Chen其他文献
Ya-Wen Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ya-Wen Chen', 18)}}的其他基金
TMPRSS2 as a potential target for treatments of COVID-19 and respiratory infectious viruses in lung
TMPRSS2 作为治疗 COVID-19 和肺部呼吸道感染病毒的潜在靶点
- 批准号:
10280827 - 财政年份:2021
- 资助金额:
$ 70.55万 - 项目类别:
相似海外基金
REU Site: Design, Create, and Innovate 3-Dimensional User Interfaces to Improve Human Sensory and Motor Performance in Virtual Environments (HUMANS MOVE)
REU 网站:设计、创建和创新 3 维用户界面,以提高虚拟环境中的人类感官和运动表现 (HUMANS MOVE)
- 批准号:
2349771 - 财政年份:2024
- 资助金额:
$ 70.55万 - 项目类别:
Standard Grant
CAREER: Atomic-level understanding of stability and transition kinetics of 3-dimensional interfaces under irradiation
职业:对辐照下 3 维界面的稳定性和转变动力学的原子水平理解
- 批准号:
2340085 - 财政年份:2024
- 资助金额:
$ 70.55万 - 项目类别:
Continuing Grant
Artificial fabrication of 3-dimensional noncollinear magnetic order and magnetization manipulation by spin torque
三维非共线磁序的人工制造和自旋转矩磁化操纵
- 批准号:
23H00232 - 财政年份:2023
- 资助金额:
$ 70.55万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Understanding of 3-dimensional seismic behavior of RC frame high-speed railway/highway viaducts using FE analysis
使用有限元分析了解 RC 框架高速铁路/公路高架桥的 3 维抗震性能
- 批准号:
23H01489 - 财政年份:2023
- 资助金额:
$ 70.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Modernization of 3-dimensional printing capabilities at the Aquatic Germplasm and Genetic Resource Center
水产种质和遗传资源中心 3 维打印能力的现代化
- 批准号:
10736961 - 财政年份:2023
- 资助金额:
$ 70.55万 - 项目类别:
The 3-dimensional nest of the honey bee: organization, development, and impact on colony function
蜜蜂的 3 维巢穴:组织、发育及其对蜂群功能的影响
- 批准号:
2216835 - 财政年份:2023
- 资助金额:
$ 70.55万 - 项目类别:
Standard Grant
Research on high-density 3-dimensional polymer optical waveguide device for photonics-electronics convergence
光电子融合高密度三维聚合物光波导器件研究
- 批准号:
23H01882 - 财政年份:2023
- 资助金额:
$ 70.55万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Scaff-Net: 3 Dimensional multiphoton polymerisation printed scaffolds for medium throughput recording from stem cell derived human cortical networks.
Scaff-Net:3 维多光子聚合打印支架,用于从干细胞衍生的人类皮质网络进行中等通量记录。
- 批准号:
EP/X018385/1 - 财政年份:2023
- 资助金额:
$ 70.55万 - 项目类别:
Research Grant
3-dimensional prompt gamma imaging for online proton beam dose verification
用于在线质子束剂量验证的 3 维瞬发伽马成像
- 批准号:
10635210 - 财政年份:2023
- 资助金额:
$ 70.55万 - 项目类别:
Equipment: MRI: Track 1 Acquisition of a 3-Dimensional Nanolithography Instrument
设备:MRI:轨道 1 获取 3 维纳米光刻仪器
- 批准号:
2320636 - 财政年份:2023
- 资助金额:
$ 70.55万 - 项目类别:
Standard Grant














{{item.name}}会员




