CAREER: Atomic-level understanding of stability and transition kinetics of 3-dimensional interfaces under irradiation
职业:对辐照下 3 维界面的稳定性和转变动力学的原子水平理解
基本信息
- 批准号:2340085
- 负责人:
- 金额:$ 55.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-09-01 至 2029-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARYScientists are on a fascinating mission to create super-tough materials that withstand extreme conditions like blistering heat, immense pressure, and even radiation. One way to achieve this is to use a special ingredient known as "interfaces," which are like secret codes in nanostructured composites that determine their unique properties. Recently, an exciting discovery was made – unveiling a new type of interface known as a "3D interface." It's like adding a new dimension to materials and holds immense potential. However, there's a twist – scientists don't fully understand how these 3D interfaces function, especially when they face radiation. The focus of this research is to use a material called Cu-Nb as a model to decode the secrets of these 3D interfaces. Two primary goals have been set: firstly, to understand the inner workings of these 3D interfaces at the tiniest atomic level, essentially taking a super-close look at them. Secondly, to explore how these 3D interfaces respond when exposed to radiation. This research will recruit high school students. The aim is to inspire the next generation's interest in science and engineering by offering research opportunities, workshops, and hands-on lab experiences, and to help prepare them for careers in the energy industry. Because these new materials have the potential to revolutionize the way we build things, particularly in the realm of nuclear energy, they could make nuclear reactors safer at lower cost. But the impact goes far beyond that – it can influence various areas, such as improving electronic devices like computer transistors. So, this mission is about understanding science and nurturing students' curiosity, preparing them for exciting careers, and ultimately collaborating with energy companies to create a better, more sustainable world. TECHNICAL SUMMARYThe PI’s research fundamentally focuses on developing advanced materials with exceptional resilience to extreme environmental conditions, encompassing high temperatures, mechanical stress, and radiation exposure. The materials in question are distinguished by their intricate microstructures, particularly the interfaces existing within them, which play a defining role in dictating their properties. A novel dimension in material science was unveiled with the discovery of 3D interfaces, a relatively new and intricate class of interfacial structures. These 3D interfaces exhibit a unique character, characterized by variations in chemical and structural attributes spanning a few atomic layers to tens of nanometers along the interface's normal direction. However, the underlying mechanisms governing the behavior of 3D interfaces, particularly in response to radiation, have remained a subject of limited understanding. This research focuses on a model material system, Cu-Nb, chosen for its suitability in exploring the intricacies of 3D interfaces. The primary research objectives encompass quantifying the varying short-range structural and chemical ordering within 3D interface structures and predicting and validating the stability and transition kinetics of these 3D interfaces when exposed to radiation. This entails a multi-faceted approach involving integrated experiments and computational modeling, with cross-validation playing a pivotal role. The significance of this work extends far beyond the confines of material science and into various practical domains. It has the potential to help identify structural materials that can endure the extreme irradiation conditions found in advanced nuclear reactors, which is an ongoing and critical challenge in the realm of nuclear energy. Furthermore, the insights derived from this research could hold relevance for interface-dominant behavior in diverse contexts, including the behavior of ultra-thin doping layers in advanced electronic components, such as FinFET transistors. Beyond its technical merits, this research strongly emphasizes outreach and education. It seeks to inspire and support both university students and local high school students, especially those from underrepresented groups, in their pursuit of careers in the energy industry. This educational component encompasses research opportunities, workshops, and hands-on laboratory experiences, aligning with the overarching goal of preparing the next generation of materials scientists and engineers for a range of applications across the energy sector and beyond.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
科学家们正在进行一项迷人的使命,即创造出能够承受极端条件(如酷热、巨大压力甚至辐射)的超坚韧材料。实现这一目标的一种方法是使用一种称为“界面”的特殊成分,它就像纳米结构复合材料中的密码,决定了它们的独特属性。最近,一个令人兴奋的发现-揭示了一种称为“3D界面”的新型界面。“这就像为材料添加了一个新的维度,并拥有巨大的潜力。然而,有一个扭曲-科学家们并不完全了解这些3D界面是如何工作的,特别是当它们面对辐射时。这项研究的重点是使用一种名为Cu-Nb的材料作为模型来解码这些3D界面的秘密。我们设定了两个主要目标:首先,在最微小的原子水平上了解这些3D界面的内部工作原理,本质上是对它们进行超近距离的观察。其次,探索这些3D界面在暴露于辐射时的反应。这项研究将招募高中生。其目的是通过提供研究机会,研讨会和动手实验室经验来激发下一代对科学和工程的兴趣,并帮助他们为能源行业的职业生涯做好准备。因为这些新材料有可能彻底改变我们建造东西的方式,特别是在核能领域,它们可以以更低的成本使核反应堆更安全。但影响远远不止于此-它可以影响各个领域,例如改进计算机晶体管等电子设备。所以,这个使命是了解科学,培养学生的好奇心,为他们的职业生涯做好准备,最终与能源公司合作,创造一个更美好,更可持续的世界。技术总结PI的研究基本上集中在开发对极端环境条件(包括高温、机械应力和辐射暴露)具有出色弹性的先进材料。所讨论的材料以其复杂的微观结构,特别是其中存在的界面为特征,这些界面在决定其性能方面起着决定性作用。随着3D界面的发现,材料科学中的一个新维度被揭开,这是一种相对较新且复杂的界面结构。这些3D界面表现出独特的特性,其特征在于沿着界面的法线方向跨越几个原子层到几十纳米的化学和结构属性的变化。然而,控制3D界面行为的基本机制,特别是对辐射的响应,仍然是一个理解有限的主题。本研究的重点是一个模型材料系统,铜-铌,选择其适用于探索三维界面的复杂性。主要研究目标包括量化不同的短程结构和化学有序的三维界面结构和预测和验证这些三维界面暴露于辐射时的稳定性和过渡动力学。这需要一个多方面的方法,包括综合实验和计算建模,交叉验证发挥了关键作用。这项工作的意义远远超出了材料科学的范围,并进入各种实际领域。它有可能帮助确定能够承受先进核反应堆中极端辐照条件的结构材料,这是核能领域持续存在的关键挑战。此外,从这项研究中获得的见解可能与不同背景下的界面主导行为相关,包括先进电子元件(如FinFET晶体管)中超薄掺杂层的行为。除了技术上的优点,这项研究还强调了推广和教育。它旨在激励和支持大学生和当地高中生,特别是那些代表性不足的群体,在他们追求能源行业的职业生涯。这个教育部分包括研究机会,研讨会和动手实验室经验,与培养下一代材料科学家和工程师的总体目标保持一致,为能源部门及其他领域的一系列应用做好准备。这个奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Youxing Chen其他文献
Investigation on terminal velocity and drag coefficient of particles with different shapes
不同形状颗粒的终端速度和阻力系数研究
- DOI:
10.1088/1742-6596/822/1/012047 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Bin Xu;N. Huang;Wei He;Youxing Chen - 通讯作者:
Youxing Chen
A plastic damage model for finite element analysis of cracking of silicon under indentation
压痕下硅裂纹有限元分析的塑性损伤模型
- DOI:
10.1557/jmr.2010.0270 - 发表时间:
2010-11 - 期刊:
- 影响因子:2.7
- 作者:
Haibo Wan;Yao Shen;Qiulong Chen;Youxing Chen - 通讯作者:
Youxing Chen
A DEM study on the criteria for particle movement over a granular bed
- DOI:
10.1016/j.powtec.2024.120315 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Xin Yin;Ning Huang;Youxing Chen;Jie Zhang - 通讯作者:
Jie Zhang
Plastic flow of Fe-binary alloys—I. A description at low temperatures
Fe-二元合金的塑性流动——I.低温下的描述
- DOI:
10.1016/0001-6160(81)90068-7 - 发表时间:
1981 - 期刊:
- 影响因子:0
- 作者:
Youxing Chen;D. Atteridge;W. Gerberich - 通讯作者:
W. Gerberich
Effects of coherency stress and vacancy sources/sinks on interdiffusion across coherent multilayer interfaces – Part I: Theory
- DOI:
- 发表时间:
- 期刊:
- 影响因子:
- 作者:
Haibo Wan;Yao Shen;Xuejun Jin;Youxing Chen;Jian Sun; - 通讯作者:
Youxing Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Youxing Chen', 18)}}的其他基金
Reducing Chemical Wear of Single Crystal Diamond Tools Cutting Alloys
减少单晶金刚石工具切削合金的化学磨损
- 批准号:
1728554 - 财政年份:2017
- 资助金额:
$ 55.58万 - 项目类别:
Standard Grant
相似海外基金
An Atomic Level Understanding of Optimal Characteristics of TiO2 Protection Layers and Photoelectrode/TiO2 Interfaces for Efficient and Stable Solar Fuel Production
从原子水平了解 TiO2 保护层和光电极/TiO2 界面的最佳特性,以实现高效、稳定的太阳能燃料生产
- 批准号:
2350199 - 财政年份:2024
- 资助金额:
$ 55.58万 - 项目类别:
Continuing Grant
CAREER: Advancing Atomic-Level Understanding of Kinetically Driven Solid-Solid Phase Transitions from First Principles and Machine Learning
职业:从第一原理和机器学习推进对动力学驱动的固-固相变的原子级理解
- 批准号:
2238516 - 财政年份:2023
- 资助金额:
$ 55.58万 - 项目类别:
Continuing Grant
CAREER: Developing a Computational Workflow to Quantify Atomic-level Allosteric Mechanisms
职业:开发计算工作流程来量化原子级变构机制
- 批准号:
2238706 - 财政年份:2023
- 资助金额:
$ 55.58万 - 项目类别:
Standard Grant
Atomic level structural control and characterisation of perovskite quantum dots
钙钛矿量子点的原子级结构控制与表征
- 批准号:
22KJ0994 - 财政年份:2023
- 资助金额:
$ 55.58万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Atomic-level Imaging and Molecular Beam Scattering Studies of Interfacial Chemical Dynamics
界面化学动力学的原子级成像和分子束散射研究
- 批准号:
2313365 - 财政年份:2023
- 资助金额:
$ 55.58万 - 项目类别:
Standard Grant
Atomic-Level Structure and Dynamic Evolutions in Cobalt-Free High-Performance Sodium-Ion Battery Cathode
无钴高性能钠离子电池正极的原子级结构和动态演化
- 批准号:
EP/Y024958/1 - 财政年份:2023
- 资助金额:
$ 55.58万 - 项目类别:
Fellowship
Atomic-Level Insight into Photoinduced Transformations in Perovskite Optoelectronics
钙钛矿光电子学中光致转变的原子级洞察
- 批准号:
EP/Y01376X/1 - 财政年份:2023
- 资助金额:
$ 55.58万 - 项目类别:
Research Grant
Atomic-level probing of the peptidoglycan biosynthetic machinery in bacterial cell wall biogenesis
细菌细胞壁生物发生中肽聚糖生物合成机制的原子水平探测
- 批准号:
10685947 - 财政年份:2022
- 资助金额:
$ 55.58万 - 项目类别:
Deciphering atomic-level enzymatic activity by time-resolved crystallography and computational enzymology
通过时间分辨晶体学和计算酶学破译原子级酶活性
- 批准号:
10507610 - 财政年份:2022
- 资助金额:
$ 55.58万 - 项目类别:
CZT Semiconductors: Growth, atomic-level properties, and integration in X-ray detectors
CZT 半导体:生长、原子级特性以及 X 射线探测器中的集成
- 批准号:
577354-2022 - 财政年份:2022
- 资助金额:
$ 55.58万 - 项目类别:
Alliance Grants