Development of therapeutic antibodies to target sodium channels involved in pain signaling
开发针对参与疼痛信号传导的钠通道的治疗性抗体
基本信息
- 批准号:10453929
- 负责人:
- 金额:$ 158.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-15 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:Action PotentialsAfferent NeuronsAntibodiesAntigen TargetingAntigensApplications GrantsBindingBiological ProductsBiological Response Modifier TherapyBiologyBiometryC FiberChemotherapy-induced peripheral neuropathyCircular DichroismClinicalComputer softwareDataDevelopmentElectrophysiology (science)ElementsEpitopesEscherichia coliEvaluationFDA approvedFeedbackGenerationsGenetic studyGoalsGrantHumanHuman GeneticsImmunizeImmunoglobulin GInterdisciplinary StudyIntrathecal InjectionsIon ChannelKineticsLlamaManualsMediator of activation proteinModelingMolecular ConformationMolecular ProbesMolecular TargetMonoclonal AntibodiesMusNeurosciencesNociceptorsPainPain managementPeptidesPharmacologyPhasePositioning AttributePre-Clinical ModelProceduresPropertyProtein EngineeringProtein FragmentProteinsRattusRecombinant AntibodyRecombinantsResearchSamplingSodiumSodium ChannelStructureTechnologyTherapeuticTherapeutic antibodiesValidationVertebral columnbasechronic pain managementdesignextracellularflexibilityimmunogenicityin vivomimeticsnanobodiesnovelnovel strategiesnovel therapeuticspain modelpain signalpre-clinicalprogramsprotein foldingrational designscreeningstructural biologysuccesstargeted treatmenttherapeutic candidatetherapeutic developmenttrendvoltage
项目摘要
Our overarching goal is to develop conformationally-specific recombinant monoclonal antibodies (R-mAb)
including Immunoglobulin G (IgG), single chain variable fragments (scFv) and nanobody (nAb) formats as a
novel class of biologics to target voltage-gated sodium (Nav) channels involved in pain signaling. Recent
breakthroughs in the structural biology of ion channels and Rosetta computational approaches for enhanced
design and refinement of antigens, antibodies (Abs) and stable peptides have set the stage for applying rational
design approaches to create conformationally-selective antibodies as superior therapeutic candidates to treat
chronic pain. Advances recombinant Ab technology allows for the generation of a broader set of candidate
therapeutics in different formats, yet with complementary attributes, that when used in conjunction further
increases the likeliehood of success. To pursue the goals of this project we will assemble a diverse and
interdisciplinary research team that will include experts in pain biology, development of therapeutics,
development of Abs in R-mAb, scFv and nAb formats, computational protein design, neuroscience,
electrophysiology, pharmacology, biostatistics, and preclinical models of pain. This project will establish our
expert research team and generate preliminary data that would support rationale, feasibility, and validity of our
rational design approach for a subsequent Team Research U19 grant application (RFA-NS-21-015). Human
genetic studies have identified the Nav1.7, Nav1.8, and Nav1.9 channel subtypes as critical mediators of action
potential generation in C-fiber nociceptors, and established these channels as molecular targets for pain therapy.
There is a growing trend toward targeting ion channels with biologics, and we will use this approach to identify
novel biological therapeutics for the treatment of pain. In particular, mAbs have emerged as prominent
therapeutics due to their low immunogenicity, high selectivity, and favorable half-lives, and there are currently
>130 different FDA approved mAbs in various formats in clinical use. Following initial studies with polyclonal Abs
that demonstrated the technical feasibility, multiple preclinical programs are now using the full spectrum of
available technologies to generate diverse forms of Abs against extracellular loops of ion channels. An
immunogen design approach, using the Rosetta modelling software, has been recently developed to stabilize
protein structural motifs as effective antigens to generate Abs targeting precisely defined epitopes. Our research
team will be in a unique position to use our novel structure-based approach and apply our interdisciplinary
expertise to develop conformationally-specific mAbs. We propose to design small proteins presenting epitope
mimetics from human Nav1.7, Nav1.8, and Nav1.9 channels followed by generation and characterization of
mAbs in IgG, scFv and nAb formats against the stabilized epitopes to develop therapeutic antibodies to treat
chronic pain.
我们的首要目标是开发构象特异性重组单克隆抗体(R-mAb)
包括免疫球蛋白G(IgG)、单链可变片段(scFv)和纳米抗体(nAb)形式,
靶向参与疼痛信号传导的电压门控钠(Nav)通道的新型生物制剂。最近
离子通道结构生物学的突破和增强的Rosetta计算方法
抗原、抗体(Abs)和稳定肽的设计和精制已经为合理的应用奠定了基础,
设计方法以产生构象选择性抗体作为治疗的上级治疗候选物
慢性疼痛先进的重组抗体技术允许产生更广泛的候选抗体。
不同形式但具有互补属性的治疗剂,当结合使用时,
增加成功的可能性。为了实现这个项目的目标,我们将组织一个多样化的,
跨学科研究小组,将包括疼痛生物学,治疗学的发展,
R-mAb、scFv和nAb形式的Ab开发,计算蛋白质设计,神经科学,
电生理学、药理学、生物统计学和疼痛的临床前模型。该项目将建立我们的
专家研究团队,并生成初步数据,以支持我们的合理性,可行性和有效性,
合理的设计方法,为随后的团队研究U19资助申请(RFA-NS-21-015)。人类
遗传学研究已经确定Nav1.7、Nav1.8和Nav1.9通道亚型是关键的作用介质
潜在的C-纤维伤害感受器的产生,并建立这些通道作为疼痛治疗的分子靶点。
有一个日益增长的趋势,靶向离子通道与生物制剂,我们将使用这种方法来确定
用于治疗疼痛的新生物治疗剂。特别是,单克隆抗体已经成为突出的
由于它们的低免疫原性、高选择性和有利的半衰期,目前存在
>130种不同的FDA批准的mAb,以各种形式用于临床。使用多克隆抗体进行初步研究后,
这证明了技术的可行性,多个临床前项目现在正在使用全方位的
可用的技术来产生针对离子通道的细胞外环的多种形式的Ab。一个
免疫原设计方法,使用Rosetta建模软件,最近已经开发出稳定
蛋白质结构基序作为有效抗原以产生靶向精确限定的表位的Ab。我们的研究
团队将处于独特位置,使用我们新颖的基于结构的方法,并应用我们的跨学科
开发构象特异性mAb的专业知识。我们建议设计小蛋白呈递表位
来自人Nav1.7、Nav1.8和Nav1.9通道的模拟物,然后生成和表征
针对稳定表位的IgG、scFv和nAb形式的mAb,以开发治疗性抗体来治疗
慢性疼痛
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HEIKE WULFF其他文献
HEIKE WULFF的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HEIKE WULFF', 18)}}的其他基金
Core A: Analytical and Medicinal Chemistry Core
核心 A:分析和药物化学核心
- 批准号:
10684074 - 财政年份:2022
- 资助金额:
$ 158.7万 - 项目类别:
KCa2 Channel Activators for Opioid Use Disorder
用于治疗阿片类药物使用障碍的 KCa2 通道激活剂
- 批准号:
10511349 - 财政年份:2022
- 资助金额:
$ 158.7万 - 项目类别:
Structure Assisted Design of SK Channel Selective Activators
SK通道选择性激活剂的结构辅助设计
- 批准号:
9329914 - 财政年份:2017
- 资助金额:
$ 158.7万 - 项目类别:
Probe and Pharmaceutical Optimization Core (PPOC)
探针和药物优化核心 (PPOC)
- 批准号:
10204121 - 财政年份:2012
- 资助金额:
$ 158.7万 - 项目类别:
Optimization of KCa2 Channel Activators as Neuroscience Tools and Potential Drugs
KCa2 通道激活剂作为神经科学工具和潜在药物的优化
- 批准号:
8191433 - 财政年份:2011
- 资助金额:
$ 158.7万 - 项目类别:
Optimization of KCa2 Channel Activators as Neuroscience Tools and Potential Drugs
KCa2 通道激活剂作为神经科学工具和潜在药物的优化
- 批准号:
8305482 - 财政年份:2011
- 资助金额:
$ 158.7万 - 项目类别:
Alkoxypsoralens, Small Molecule Blockers of the Voltage-Gated Kv1.3 Channel
烷氧基补骨脂素,电压门控 Kv1.3 通道的小分子阻断剂
- 批准号:
7935079 - 财政年份:2009
- 资助金额:
$ 158.7万 - 项目类别:
Alkoxypsoralens, Small Molecule Blockers of the Voltage-Gated Kv1.3 Channel
烷氧基补骨脂素,电压门控 Kv1.3 通道的小分子阻断剂
- 批准号:
7141943 - 财政年份:2006
- 资助金额:
$ 158.7万 - 项目类别:
The microglial potassium channels Kv1.3 and KCa3.1 as therapeutic targets for neu
小胶质细胞钾通道 Kv1.3 和 KCa3.1 作为 neu 的治疗靶点
- 批准号:
8286872 - 财政年份:2006
- 资助金额:
$ 158.7万 - 项目类别:
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 158.7万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 158.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 158.7万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 158.7万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 158.7万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 158.7万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 158.7万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 158.7万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 158.7万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 158.7万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




