Developing a clinical decision support tool for the identification, diagnosis, and treatment of critical illness in hospitalized patients
开发用于住院患者危重疾病识别、诊断和治疗的临床决策支持工具
基本信息
- 批准号:10454182
- 负责人:
- 金额:$ 55.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:Admission activityAdultAlgorithmsAntibioticsCaringCessation of lifeClinicalComplexCongestive Heart FailureCritical CareCritical IllnessDataData SetDecision MakingDeteriorationDiagnosisDiagnosticEarly DiagnosisEffectivenessElectronic Health RecordEtiologyEventFatigueGoalsGoldHealthHealth systemHospital MortalityHospitalsHourHumanIntensive CareLaboratoriesLeadLearningLifeMachine LearningManualsMedicalMedical ErrorsMissionModelingMorbidity - disease rateNatural Language ProcessingOperative Surgical ProceduresOutcomePatient-Focused OutcomesPatientsProviderPsychological reinforcementPublic HealthRecommendationResearchResourcesRiskRisk FactorsSavingsSepsisSourceStructureSupervisionTestingTimeTreesUnited States National Institutes of HealthWorkbasecase-basedclinical decision supportclinical diagnosisclinical practiceclinical riskcommon treatmentcost outcomesdesigndiagnostic accuracydisabilitydiscrete timeexperiencegraphical user interfacehigh riskimprovedimproved outcomeinnovationiterative designlearning strategymachine learning frameworkmachine learning methodmachine learning modelmortalitymultitasknoveloptimal treatmentspersonalized carepersonalized interventionpredictive modelingpreventable deathrecurrent neural networksatisfactionsepsis induced ARDSsimulationstructured datasupport toolstooltransfer learninguser centered designward
项目摘要
PROJECT SUMMARY
Up to 5% of hospitalized adult patients on the medical-surgical wards develop clinical deterioration requiring
intensive care. Medical errors are common before deterioration events, including delays and misjudgments in
identification, diagnosis, and treatment, and these errors lead to increased morbidity and mortality. Therefore, it
is critically important to improve the care of high-risk ward patients to decrease preventable in-hospital deaths.
The current paradigm for attempting to decrease mortality from deterioration has several limitations. First,
most early warning scores designed to identify high-risk patients are based only on vital signs and have limited
accuracy. Clinical notes are an underutilized, rich source of information comprising nearly 80% of electronic
health record (EHR) data. Natural language processing (NLP) can extract important risk factors from clinical
notes for machine learning models to improve accuracy over existing tools. Second, current early warning scores
only tell clinicians that a patient is at high risk but provide no information regarding what clinical condition is
causing a patient’s deterioration. This leads to diagnostic and treatment errors, which results in worse patient
outcomes. Developing tools to enhance diagnostic accuracy for high-risk ward patients could lead to fewer
medical errors, decreased costs, and improved outcomes. Third, the initial treatment decisions for deteriorating
patients are made by clinicians with limited experience caring for critically ill patients, which can result in delays
of potentially life-saving therapies. By utilizing a large, granular, multicenter dataset, algorithms to predict the
treatments a patient should receive can be developed, resulting in early, targeted, potentially life-saving therapy.
The long-term goal is to develop and implement clinically useful decision support tools to decrease
preventable death from deterioration. The overall objective of this project is to develop a clinical decision support
tool for the identification, diagnosis, and treatment of patients at high risk of deterioration. This objective will be
pursued in the following three specific aims: 1) Develop machine learning models to identify patients at high risk
of deterioration using both structured data and unstructured clinical notes; 2) Develop models to predict the
diagnosis that is causing the deterioration event and the potentially life-saving treatments that should be provided
to high-risk patients; 3) Develop a clinical decision support tool with a graphical user interface incorporating the
models from Aims 1 and 2 via user-centered design principles and then test its effectiveness, efficiency, and
user satisfaction in a case-based simulation study. This research is innovative because it will utilize NLP,
reinforcement learning, interpretable machine learning, and multi-task transfer learning approaches. The
proposed research is significant because it will provide clinicians with powerful new tools that can be
implemented in the EHR to identify, diagnose, and make treatment recommendations for high-risk patients. This
will result in the delivery of early, personalized care to decrease preventable death from deterioration.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Michael Churpek其他文献
Matthew Michael Churpek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Michael Churpek', 18)}}的其他基金
Sepsis Early Prediction and Subphenotype Illumination Study (SEPSIS)
脓毒症早期预测和亚表型启发研究 (SEPSIS)
- 批准号:
10405298 - 财政年份:2022
- 资助金额:
$ 55.5万 - 项目类别:
Sepsis Early Prediction and Subphenotype Illumination Study (SEPSIS)
脓毒症早期预测和亚表型启发研究 (SEPSIS)
- 批准号:
10615855 - 财政年份:2022
- 资助金额:
$ 55.5万 - 项目类别:
Developing a clinical decision support tool for the identification, diagnosis, and treatment of critical illness in hospitalized patients
开发用于住院患者危重疾病识别、诊断和治疗的临床决策支持工具
- 批准号:
10182492 - 财政年份:2021
- 资助金额:
$ 55.5万 - 项目类别:
Developing a clinical decision support tool for the identification, diagnosis, and treatment of critical illness in hospitalized patients
开发用于住院患者危重疾病识别、诊断和治疗的临床决策支持工具
- 批准号:
10683402 - 财政年份:2021
- 资助金额:
$ 55.5万 - 项目类别:
Using Machine Learning for Early Recognition and Personalized Treatment of Acute Kidney Injury
使用机器学习对急性肾损伤进行早期识别和个性化治疗
- 批准号:
10461848 - 财政年份:2021
- 资助金额:
$ 55.5万 - 项目类别:
Using Machine Learning for Early Recognition and Personalized Treatment of Acute Kidney Injury
使用机器学习对急性肾损伤进行早期识别和个性化治疗
- 批准号:
10683199 - 财政年份:2021
- 资助金额:
$ 55.5万 - 项目类别:
Using Machine Learning for Early Recognition and Personalized Treatment of Acute Kidney Injury
使用机器学习对急性肾损伤进行早期识别和个性化治疗
- 批准号:
10294824 - 财政年份:2021
- 资助金额:
$ 55.5万 - 项目类别:
Sepsis Early Prediction and Subphenotype Illumination Study (SEPSIS)
脓毒症早期预测和亚表型启发研究 (SEPSIS)
- 批准号:
9904745 - 财政年份:2017
- 资助金额:
$ 55.5万 - 项目类别:
Sepsis Early Prediction and Subphenotype Illumination Study (SEPSIS)
脓毒症早期预测和亚表型启发研究 (SEPSIS)
- 批准号:
10056599 - 财政年份:2017
- 资助金额:
$ 55.5万 - 项目类别:
Sepsis Early Prediction and Subphenotype Illumination Study (SEPSIS)
脓毒症早期预测和亚表型启发研究 (SEPSIS)
- 批准号:
9472356 - 财政年份:2017
- 资助金额:
$ 55.5万 - 项目类别:
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 55.5万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 55.5万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 55.5万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 55.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 55.5万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 55.5万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 55.5万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 55.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 55.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 55.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)