Computational Models for the Prediction and Prevention of Child Traumatic Stress - Resubmission - 1
预测和预防儿童创伤应激的计算模型 - 重新提交 - 1
基本信息
- 批准号:10455072
- 负责人:
- 金额:$ 62.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-20 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:18 year oldAddressAdolescentAreaBig DataBirthChildChild Traumatic StressChild WelfareClinicalCognitiveComputer ModelsComputing MethodologiesDataData CollectionData SetDecision TreesDependenceDevelopmentEmotionalEthicsEtiologyGenotypeHealthHumanInterventionKnowledgeLearningLeftLiteratureLongitudinal StudiesMeasuresMental DepressionMethodologyMethodsModelingObservational StudyOutcomeParentsPerformancePopulationPopulation HeterogeneityPost-Traumatic Stress DisordersPredictive FactorPreventionPrimary PreventionRandomizedReportingResearchRetrospective StudiesRiskRisk FactorsSecondary PreventionSubstance abuse problemTimeTraumaYouthbasecausal modelcohortcomputerizeddesigndiverse dataexperienceexperimental studyfunctional outcomesimprovedinnovationmachine learning predictionnovelpediatric traumapersonalized predictionspredictive modelingpreservationpreventpreventive interventionprospectiverisk predictionsimulationsocialtooltrauma exposuretraumatic eventtraumatic stresstraumatized children
项目摘要
Project Summary/Abstract
At least 40% of children will experience a traumatic event. Of those who experience a trauma, 15-40% will
develop Posttraumatic Stress Disorder (PTSD), and other adverse psychiatric, health, and functional outcomes
(herein called Child Traumatic Stress - CTS). Despite decades of research on risk factors for CTS, the field has
not arrived at specific risk factor models that can accurately predict the likelihood of CTS outcomes or identify
factors that – if changed – would change their likelihood. Knowledge about changes in factors that result in
changes in outcomes is, by definition, causal. The vast majority of findings in the literature on risk for CTS
cannot provide such causal knowledge because such findings were based on the application of correlational
methods to observational data. Experimental research cannot – for all practical purposes - be conducted for
human research on risk for CTS. Thus, the field is left with correlational observational research as the near
exclusive generator of empirical knowledge on risk for CTS, and such knowledge is unsuitable to guide the
actions (i.e. interventions) that must be taken to change children's likelihood of acquiring CTS outcomes. We
propose to address this considerable barrier to progress by applying methods that can enable confident causal
inference with large observational data sets containing a broad diversity of risk variables for CTS. Machine
Learning (ML) predictive and causal modeling methods will be applied to discover causal relationships among
measured variables from observational data: and from such determined causal relationships, to estimate the
effect on a CTS outcome when a causal variable is manipulated (i.e. intervention simulation). We will build
models for outcomes associated with childhood trauma in the literature and that entail significant burden to
children's well-being, functioning, and development: PTSD, Depression, Substance Abuse, Health, and
Educational Performance.
项目概要/摘要
至少 40% 的儿童会经历过创伤事件。在经历过创伤的人中,15-40% 的人会
出现创伤后应激障碍 (PTSD) 以及其他不良精神、健康和功能结果
(本文称为儿童创伤性应激 - CTS)。尽管对 CTS 风险因素进行了数十年的研究,但该领域
尚未建立能够准确预测 CTS 结果可能性或识别的特定风险因素模型
这些因素——如果改变——就会改变它们的可能性。了解导致以下情况发生的因素的变化
根据定义,结果的变化是因果关系。文献中绝大多数关于 CTS 风险的研究结果
无法提供此类因果知识,因为此类发现是基于相关性的应用
观测数据的方法。出于所有实际目的,实验研究不能用于
关于 CTS 风险的人类研究。因此,该领域只剩下相关观察研究作为近
CTS 风险经验知识的独家生成者,此类知识不适合指导
为改变儿童获得 CTS 结果的可能性而必须采取的行动(即干预措施)。我们
建议通过应用能够实现可靠因果关系的方法来解决这一巨大的进步障碍
利用包含广泛多样性的 CTS 风险变量的大型观测数据集进行推断。机器
将应用学习(ML)预测和因果建模方法来发现之间的因果关系
从观测数据中测量变量:并根据这种确定的因果关系来估计
操纵因果变量(即干预模拟)时对 CTS 结果的影响。我们将建设
文献中与童年创伤相关的结果模型,这些模型给儿童带来了沉重的负担
儿童的福祉、功能和发展:创伤后应激障碍(PTSD)、抑郁症、药物滥用、健康和
教育表现。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GLENN N SAXE其他文献
GLENN N SAXE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GLENN N SAXE', 18)}}的其他基金
The Center on Causal Data Science for Child Maltreatment Prevention (the CHAMP Center)
儿童虐待预防因果数据科学中心(CHAMP 中心)
- 批准号:
10672629 - 财政年份:2023
- 资助金额:
$ 62.11万 - 项目类别:
Computational Models for the Prediction and Prevention of Child Traumatic Stress - Resubmission - 1
预测和预防儿童创伤应激的计算模型 - 重新提交 - 1
- 批准号:
10206005 - 财政年份:2019
- 资助金额:
$ 62.11万 - 项目类别:
Computational Models for the Prediction and Prevention of Child Traumatic Stress - Resubmission - 1
预测和预防儿童创伤应激的计算模型 - 重新提交 - 1
- 批准号:
10021724 - 财政年份:2019
- 资助金额:
$ 62.11万 - 项目类别:
Network Science Methodology for Assessing PTSD Risk
评估 PTSD 风险的网络科学方法
- 批准号:
7893201 - 财政年份:2009
- 资助金额:
$ 62.11万 - 项目类别:
Network Science Methodology for Assessing PTSD Risk
评估 PTSD 风险的网络科学方法
- 批准号:
8209319 - 财政年份:2009
- 资助金额:
$ 62.11万 - 项目类别:
Network Science Methodology for Assessing PTSD Risk
评估 PTSD 风险的网络科学方法
- 批准号:
7680858 - 财政年份:2009
- 资助金额:
$ 62.11万 - 项目类别:
PTSD in Children with Injuries: A Longitudinal Study
受伤儿童的创伤后应激障碍:一项纵向研究
- 批准号:
7171862 - 财政年份:2003
- 资助金额:
$ 62.11万 - 项目类别:
相似海外基金
Enhancing Structural Competency in School-Based Health Centers to Address LGBTQ+ Adolescent Health Equity
增强校本健康中心的结构能力,以解决 LGBTQ 青少年健康公平问题
- 批准号:
10608426 - 财政年份:2023
- 资助金额:
$ 62.11万 - 项目类别:
Application and feasability of a brief digital screening tool to address parental and adolescent tobacco and electronic cigarette use in pediatric medical care - a pilot study
简短的数字筛查工具的应用和可行性,以解决儿科医疗中父母和青少年烟草和电子烟的使用问题 - 一项试点研究
- 批准号:
486580 - 财政年份:2022
- 资助金额:
$ 62.11万 - 项目类别:
Studentship Programs
Co-design of an intervention to address alcohol use among adolescent boys and young men in Tanzania
共同设计一项干预措施,解决坦桑尼亚青春期男孩和年轻男性的饮酒问题
- 批准号:
MR/V032380/1 - 财政年份:2022
- 资助金额:
$ 62.11万 - 项目类别:
Research Grant
Complex intervention to optimise adolescent BMI pre-conception to address the double burden of malnutrition: A RCT in rural and urban South Africa
优化青少年孕前体重指数以解决营养不良的双重负担的复杂干预措施:南非农村和城市的随机对照试验
- 批准号:
MR/V005790/1 - 财政年份:2021
- 资助金额:
$ 62.11万 - 项目类别:
Research Grant
Application of a brief digital screening tool to address parental and adolescent tobacco and electronic cigarette use in pediatric medical care
应用简短的数字筛查工具来解决儿科医疗中父母和青少年烟草和电子烟的使用问题
- 批准号:
455984 - 财政年份:2021
- 资助金额:
$ 62.11万 - 项目类别:
Operating Grants
Complex intervention to optimise adolescent BMI pre-conception to address the double burden of malnutrition: A RCT in rural and urban South Africa
优化青少年孕前体重指数以解决营养不良的双重负担的复杂干预措施:南非农村和城市的随机对照试验
- 批准号:
MR/V005790/2 - 财政年份:2021
- 资助金额:
$ 62.11万 - 项目类别:
Research Grant
Development of the Cannabis Actions and Practices (CAP): A Parent-Focused Intervention to Address Adolescent Marijuana Use
大麻行动和实践 (CAP) 的发展:以家长为中心的干预措施,解决青少年大麻使用问题
- 批准号:
10057761 - 财政年份:2020
- 资助金额:
$ 62.11万 - 项目类别:
Development of the Cannabis Actions and Practices (CAP): A Parent-Focused Intervention to Address Adolescent Marijuana Use
大麻行动和实践 (CAP) 的发展:以家长为中心的干预措施,解决青少年大麻使用问题
- 批准号:
10213683 - 财政年份:2020
- 资助金额:
$ 62.11万 - 项目类别:
Targeted interventions to address the multi-level effects of gender-based violence on PrEP uptake and adherence among adolescent girls and young women in Kenya
有针对性的干预措施,以解决性别暴力对肯尼亚少女和年轻妇女接受和坚持 PrEP 的多层面影响
- 批准号:
9403567 - 财政年份:2017
- 资助金额:
$ 62.11万 - 项目类别:
Designing targeted interventions to address HIV vulnerabilities and improve clinical outcomes among conflict affected adolescent girls and young women under 25 in Northern Uganda
设计有针对性的干预措施,以解决乌干达北部受冲突影响的少女和 25 岁以下年轻妇女的艾滋病毒脆弱性并改善临床结果
- 批准号:
356145 - 财政年份:2016
- 资助金额:
$ 62.11万 - 项目类别:
Operating Grants














{{item.name}}会员




