Network Science Methodology for Assessing PTSD Risk
评估 PTSD 风险的网络科学方法
基本信息
- 批准号:7893201
- 负责人:
- 金额:$ 1.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-15 至 2010-09-30
- 项目状态:已结题
- 来源:
- 关键词:Applications GrantsAreaAutistic DisorderBehavioralBioinformaticsBiomedical ResearchBurn injuryCellsChildChild DevelopmentCoinCommunicable DiseasesComplexComputational BiologyData SetDevelopmentDiseaseDissociationEmotionalEvaluationEventExploratory/Developmental GrantExposure toFailureFamilyFutureGene ProteinsGenomicsHippocampus (Brain)HourHumanInjuryInternetInterventionKnowledgeLeadLinkLiteratureMalignant NeoplasmsMedicineMental HealthMethodologyModelingMolecularNatureOutcomePost-Traumatic Stress DisordersPreventionProblem behaviorProcessPropertyPsychopathologyRefractoryResearchResearch MethodologyResistanceRiskRisk FactorsScienceSystemTimeTraumaWorkagedbasefunctional disabilityhigh risk infantinfancymedical schoolsreconstructionself organizationsocialyoung adult
项目摘要
DESCRIPTION (provided by applicant): This application seeks to bring a relatively new research methodology called Network Science (NS) to the understanding of risk factors for the complex and multi-determined psychopathology of PTSD. Network Science has been applied, in many areas of scientific pursuit, to understand the variables that most contribute to the emergence and persistence of complex phenomena. The methodology of NS enables the determination of whether a given set of variables develops the properties of what has been termed a 'Complex Adaptive System (CAS)'. The essential properties of a CAS include self-organization, self- sustenance, and robustness. A CAS can emerge from natural (e.g. a cell, a disease) or human-made (e.g. the internet, an economy) phenomena. Once a CAS emerges, this complex system of variables becomes highly resistant to external challenge. This perspective has influenced biomedical research in a number of important areas (e.g. cancer, infectious disease, autism) and the term 'Network Medicine' has been coined to describe the application of NS to biomedical research. This application brings together a team with diverse areas of expertise ideally suited to the application of NS to risk factor research for PTSD. Expertise in the following areas is featured in this proposed research: 1) bio-behavioral risk factors for PTSD, 2) genomics of PTSD, 3) computational biology and bioinformatics, 4) child development, and 5) longitudinal research methodology related to PTSD. This team will work together to determine if a complex set of variables related to PTSD may constitute a Complex Adaptive System; and whether the robust properties of such a system lead to the treatment refractory nature of PTSD. Network Science methodology will be applied to 1) the analysis of two compelling longitudinal datasets that contain information ideally suited to understanding the systemic properties of PTSD; and 2) the creation of a Molecular Network Reconstruction of PTSD based on queries of available information on the relationship between PTSD (and related disorders); and the genes and proteins associated with these disorders. If NS reveals a Complex Adaptive System related to traumatic exposure and PTSD, intervention approaches to treat PTSD can be substantially informed by understanding how such a system persists or fails. This application seeks to bring a relatively new research methodology called Network Science (NS) to the understanding of risk factors for the complex and multi-determined psychopathology of PTSD. Network Science has been applied, in many areas of scientific pursuit, to understand the variables that most contribute to the emergence and persistence of complex phenomena. The methodology of NS enables the determination of whether a given set of variables develops the properties of what has been termed a 'Complex Adaptive System (CAS)'. If NS reveals a Complex Adaptive System related to traumatic exposure and PTSD, intervention approaches to treat PTSD can be substantially informed by understanding how such a system persists or fails.
描述(由申请人提供):本申请旨在将一种称为网络科学(NS)的相对较新的研究方法引入到对PTSD复杂和多决定的精神病理学的风险因素的理解中。网络科学已被应用于科学研究的许多领域,以了解最有助于复杂现象的出现和持续的变量。NS的方法能够确定一组给定的变量是否发展了所谓的“复杂适应系统”的属性。CAS的基本属性包括自组织、自维持和鲁棒性。CAS可以从自然(例如细胞,疾病)或人为(例如互联网,经济)现象中出现。一旦CAS出现,这个复杂的变量系统就变得非常难以应对外部挑战。这一观点影响了许多重要领域的生物医学研究(例如癌症、传染病、自闭症),并创造了“网络医学”一词来描述NS在生物医学研究中的应用。这个应用程序汇集了一个团队,具有不同领域的专业知识,非常适合将NS应用于PTSD的风险因素研究。在以下领域的专业知识是特色在这个拟议的研究:1)生物行为的风险因素PTSD,2)PTSD的基因组学,3)计算生物学和生物信息学,4)儿童发展,和5)纵向研究方法有关的PTSD。该团队将共同努力,以确定是否与PTSD相关的一组复杂的变量可能构成一个复杂的适应系统;以及这种系统的强大特性是否导致PTSD的治疗难治性。网络科学方法将应用于1)分析两个引人注目的纵向数据集,这些数据集包含非常适合理解PTSD系统特性的信息; 2)基于对PTSD(和相关疾病)之间关系的可用信息的查询创建PTSD的分子网络重建;以及与这些疾病相关的基因和蛋白质。如果NS揭示了与创伤暴露和PTSD相关的复杂适应系统,那么通过了解这种系统如何持续或失败,可以充分了解治疗PTSD的干预方法。该应用程序旨在将一种相对较新的研究方法称为网络科学(NS),以了解PTSD复杂和多决定的精神病理学的风险因素。网络科学已被应用于科学研究的许多领域,以了解最有助于复杂现象的出现和持续的变量。NS的方法能够确定一组给定的变量是否发展了所谓的“复杂适应系统”的属性。如果NS揭示了与创伤暴露和PTSD相关的复杂适应系统,那么通过了解这种系统如何持续或失败,可以充分了解治疗PTSD的干预方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GLENN N SAXE其他文献
GLENN N SAXE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GLENN N SAXE', 18)}}的其他基金
The Center on Causal Data Science for Child Maltreatment Prevention (the CHAMP Center)
儿童虐待预防因果数据科学中心(CHAMP 中心)
- 批准号:
10672629 - 财政年份:2023
- 资助金额:
$ 1.27万 - 项目类别:
Computational Models for the Prediction and Prevention of Child Traumatic Stress - Resubmission - 1
预测和预防儿童创伤应激的计算模型 - 重新提交 - 1
- 批准号:
10206005 - 财政年份:2019
- 资助金额:
$ 1.27万 - 项目类别:
Computational Models for the Prediction and Prevention of Child Traumatic Stress - Resubmission - 1
预测和预防儿童创伤应激的计算模型 - 重新提交 - 1
- 批准号:
10021724 - 财政年份:2019
- 资助金额:
$ 1.27万 - 项目类别:
Computational Models for the Prediction and Prevention of Child Traumatic Stress - Resubmission - 1
预测和预防儿童创伤应激的计算模型 - 重新提交 - 1
- 批准号:
10455072 - 财政年份:2019
- 资助金额:
$ 1.27万 - 项目类别:
Network Science Methodology for Assessing PTSD Risk
评估 PTSD 风险的网络科学方法
- 批准号:
8209319 - 财政年份:2009
- 资助金额:
$ 1.27万 - 项目类别:
Network Science Methodology for Assessing PTSD Risk
评估 PTSD 风险的网络科学方法
- 批准号:
7680858 - 财政年份:2009
- 资助金额:
$ 1.27万 - 项目类别:
PTSD in Children with Injuries: A Longitudinal Study
受伤儿童的创伤后应激障碍:一项纵向研究
- 批准号:
7171862 - 财政年份:2003
- 资助金额:
$ 1.27万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 1.27万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 1.27万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 1.27万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 1.27万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 1.27万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 1.27万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 1.27万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 1.27万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 1.27万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 1.27万 - 项目类别:
Standard Grant