Understanding the Distributed Control of Flexible Behavior

了解灵活行为的分布式控制

基本信息

  • 批准号:
    10640703
  • 负责人:
  • 金额:
    $ 6.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

ABSTRACT Our brains have the remarkable ability to both produce precise, consistent movements in an invariant environment and dynamically adjust behavior to a changing environment. Almost all our everyday actions, such as driving a car or riding a bike, necessitate such flexible multi-tasking. Losing the ability to flexibly adjust behavior is dramatic and debilitating, as evidenced by disorders such as obsessive-compulsive disorder (OCD) or profound forms of autism spectrum disorder (ASD). While considerable work has examined how the brain’s distributed motor network controls consistent movements in an invariant environment, the mechanisms that allow for flexibility in movement control remain unknown. In this project, I develop a behavioral model to study the flexible production of multiple distinct reaching movements in mice. The extensive previous work that has characterized the neural control of reaching movements provides a powerful framework to precisely understand the neural control of flexibility. I use this model to investigate the distributed control of flexible movements across the primary motor cortex (M1), basal ganglia (BG), and cerebellum (CB). While the M1-BG and M1-CB networks have been previously investigated in isolation, how all three regions interact is largely unexplored. I leverage (1) large-scale multi-site neurophysiology in M1, BG, and CB, (2) genetically controlled thalamic manipulations of M1-BG and M1-CB networks, (3) multi-region recurrent neural network models, and (4) mouse models of OCD and ASD that display behavioral inflexibility to uncover fundamental principles by which the brain’s distributed motor network governs flexibility in movement control and shed light on how these mechanisms dysfunction in brain disorders.
摘要 我们的大脑有一种非凡的能力,既能以不变的方式产生精确、一致的运动, 环境,并动态调整行为以适应不断变化的环境。几乎所有的日常活动,如 正如驾驶汽车或骑自行车一样,需要如此灵活的多任务处理。失去灵活调整的能力 行为是戏剧性的和衰弱的,如强迫症(OCD)等疾病所证明的 或者说是自闭症谱系障碍的严重形式。虽然大量的工作已经研究了大脑是如何 分布式运动网络在不变的环境中控制一致的运动,这种机制允许 灵活的移动控制仍然是未知的。在这个项目中,我开发了一个行为模型来研究 在小鼠中灵活地产生多种不同的伸展运动。之前的大量工作 表征的神经控制达到运动提供了一个强大的框架,以精确地理解 神经对柔韧性的控制我用这个模型来研究分布式控制的灵活运动, 初级运动皮层(M1)、基底神经节(BG)和小脑(CB)。虽然M1-BG和M1-CB网络 虽然先前已经单独研究过,但这三个区域如何相互作用在很大程度上尚未探索。我杠杆(1) M1、BG和CB中的大规模多部位神经生理学,(2)遗传控制的丘脑操纵, M1-BG和M1-CB网络,(3)多区域递归神经网络模型,以及(4)强迫症小鼠模型 和自闭症谱系障碍,显示出行为上的可解释性,以揭示大脑分布的基本原则, 运动网络控制着运动控制的灵活性,并阐明了这些机制是如何在运动控制中发生功能障碍的。 脑部疾病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stefan Lemke其他文献

Stefan Lemke的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

天使症候群(Angelman Syndrome,AS)TrkB信号损伤的机制研究及靶向干预
  • 批准号:
    31371139
  • 批准年份:
    2013
  • 资助金额:
    80.0 万元
  • 项目类别:
    面上项目

相似海外基金

The Role of Sensory Receptors in Angelman Syndrome
感觉感受器在天使综合症中的作用
  • 批准号:
    10630683
  • 财政年份:
    2023
  • 资助金额:
    $ 6.95万
  • 项目类别:
Small Molecule Therapeutic Discovery for Angelman Syndrome
天使综合症的小分子治疗发现
  • 批准号:
    10636253
  • 财政年份:
    2023
  • 资助金额:
    $ 6.95万
  • 项目类别:
Interaction of Myelin-Axon reveled new pathological mechanism in angelman syndrome
髓鞘-轴突的相互作用揭示了天使综合征的新病理机制
  • 批准号:
    22K07868
  • 财政年份:
    2022
  • 资助金额:
    $ 6.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Determining minimal clinically important differences for neurodevelopmental outcome measures in Angelman syndrome
确定天使综合征神经发育结果测量的最小临床重要差异
  • 批准号:
    10186591
  • 财政年份:
    2021
  • 资助金额:
    $ 6.95万
  • 项目类别:
Determining minimal clinically important differences for neurodevelopmental outcome measures in Angelman syndrome
确定天使综合征神经发育结果测量的最小临床重要差异
  • 批准号:
    10396549
  • 财政年份:
    2021
  • 资助金额:
    $ 6.95万
  • 项目类别:
Gene Therapy Rescue of Angelman Syndrome with Reelin
Reelin 基因疗法拯救天使综合症
  • 批准号:
    10317654
  • 财政年份:
    2021
  • 资助金额:
    $ 6.95万
  • 项目类别:
Contribution of GABA-A receptor subunit deletions to Angelman syndrome pathophysiology
GABA-A 受体亚基缺失对 Angelman 综合征病理生理学的贡献
  • 批准号:
    10391880
  • 财政年份:
    2021
  • 资助金额:
    $ 6.95万
  • 项目类别:
CRISPR/Cas9-based gene therapy for Angelman syndrome
基于 CRISPR/Cas9 的 Angelman 综合征基因疗法
  • 批准号:
    10490828
  • 财政年份:
    2019
  • 资助金额:
    $ 6.95万
  • 项目类别:
CRISPR/Cas9-based gene therapy for Angelman syndrome
基于 CRISPR/Cas9 的 Angelman 综合征基因疗法
  • 批准号:
    10237150
  • 财政年份:
    2019
  • 资助金额:
    $ 6.95万
  • 项目类别:
CRISPR/Cas9-based gene therapy for Angelman syndrome
基于 CRISPR/Cas9 的 Angelman 综合征基因疗法
  • 批准号:
    10011898
  • 财政年份:
    2019
  • 资助金额:
    $ 6.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了