Developing artificial neural network tools for cognitive modeling

开发用于认知建模的人工神经网络工具

基本信息

  • 批准号:
    10641215
  • 负责人:
  • 金额:
    $ 22.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract Mathematical modeling is an essential tool to study the brain, behavior and cognition. Computational cognitive models state with simple mathematical equations how the brain may be manipulating information that supports how humans and animals interpret the world around them, make choices and adapt to new environments or events. Researchers can use computational cognitive models to quantitatively test the theories embedded in the models, by comparing model predictions with behavioral and neural data. Models also often have meaningful parameters that can be tuned to reflect how specific information is used, for example how much participants weigh prospective gains vs. losses in decisions, how willing participants are to explore new information vs. exploit the information they already have, or how confident they need to be before committing to a decision. In the context of psychiatric and neuro-degenerative diseases, computational modelers can ask whether models fit patients' behavior/neural activity differently than healthy controls, thereby explaining impairments as a difference in information processing; or whether they exhibit different parameters for the same models, showing different weighing of information. Thus, computational modeling provides important quantitative tools to understand how brain disease impacts behavior and cognition. However, such research requires statistical tools to quantitatively relate models to data - that is, to identify which models and which parameters explain the data best. Existing tools mostly rely on computing the likelihood of the data under the model, and are very powerful for a specific class of models. However, they leave out a much broader class of models for which the likelihood is too complex to compute. This class of models includes many simple and relevant models that embody reasonable theories of cognition, but these models are currently unexplored, because researchers lack the tools required to relate them to data. The goal of this proposal is to develop new tools for this class of models, using modern supervised machine learning techniques (with deep neural networks) that bypass the need to compute the likelihood, but do not require advanced expertise in ap- plied mathematics and are broadly generalizable to the whole class of models that are currently inaccessible to existing techniques. Specifically, we will develop tools to 1) identify which of multiple models explain a partici- pant's data better, 2) identify the value of model parameters that best explain a participant's data, and 3) infer how the model variables generated the participant's behavior, enabling us to relate these variables to brain data. This research will vastly increase the potential reach of computational techniques in neuroscience, enabling researchers to consider theories that are currently discarded for lack of tools. This is an important step toward broadening our understanding of mental illness and brain diseases.
项目摘要/摘要 数学建模是研究大脑、行为和认知的重要工具。计算认知 模型用简单的数学方程式描述了大脑如何处理支持 人类和动物如何解释他们周围的世界,如何做出选择并适应新的环境 事件。研究人员可以使用计算认知模型来定量测试嵌入在 模型,通过将模型预测与行为和神经数据进行比较。模特也经常有意义的 可调优以确定如何使用特定的flc++信息的参数,例如有多少参与者。 权衡决策中的预期收益与损失,参与者探索新信息的意愿与 利用他们已有的信息,或在做出决定之前他们需要如何应对fi。在……里面 在精神病学和神经退行性疾病的背景下,计算建模师可以问,模型fi是否 患者的行为/神经活动与健康对照组不同,从而将损害解释为不同 在信息处理中;或者它们对于相同的模型是否表现出不同的参数,表现出不同的 权衡信息。因此,计算建模提供了重要的量化工具来理解 脑部疾病会影响行为和认知。 然而,这样的研究需要统计工具来定量地将模型与数据联系起来-也就是,识别 哪些模型和哪些参数最好地解释了数据。现有的工具大多依赖于计算可能性 该模型下的数据,并且对于一个特殊的fic类模型是非常强大的。但是,它们省略了一个 更广泛的一类模型,其可能性太复杂而无法计算。这类模型包括 许多简单和相关的模型体现了合理的认知理论,但这些模型目前 未被探索,因为研究人员缺乏将它们与数据联系起来所需的工具。这项提议的目标是 使用现代有监督的机器学习技术为这类模型开发新工具(具有深度 神经网络),它绕过了计算可能性的需要,但不需要在AP- 精通数学,并可广泛推广到目前无法访问的整个模型类 现有的技术。具体地说,我们将开发工具来1)确定多种模型中的哪一种可以解释一个粒子--fi Pant的数据更好,2)确定最能解释参与者数据的模型参数的值,以及3)推断 模型变量如何产生参与者的行为,使我们能够将这些变量与大脑数据联系起来。 这项研究将极大地增加计算技术在神经科学中的潜在覆盖面,使 研究人员考虑目前因缺乏工具而被丢弃的理论。这是迈向 拓宽了我们对精神疾病和脑部疾病的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anne G.E. Collins其他文献

Dual effects of dual-tasking on instrumental learning
  • DOI:
    10.1016/j.cognition.2025.106228
  • 发表时间:
    2025-11-01
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Huang Ham;Samuel D. McDougle;Anne G.E. Collins
  • 通讯作者:
    Anne G.E. Collins
A goal-centric outlook on learning
以目标为中心的学习观
  • DOI:
    10.1016/j.tics.2023.08.011
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
    17.200
  • 作者:
    Gaia Molinaro;Anne G.E. Collins
  • 通讯作者:
    Anne G.E. Collins

Anne G.E. Collins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anne G.E. Collins', 18)}}的其他基金

Thalamocortical cognitive networks in the healthy human brain
健康人脑中的丘脑皮质认知网络
  • 批准号:
    10633809
  • 财政年份:
    2023
  • 资助金额:
    $ 22.85万
  • 项目类别:
The neural computations supporting hierarchical reinforcement learning
支持分层强化学习的神经计算
  • 批准号:
    10359201
  • 财政年份:
    2019
  • 资助金额:
    $ 22.85万
  • 项目类别:
The neural computations supporting hierarchical reinforcement learning
支持分层强化学习的神经计算
  • 批准号:
    10113371
  • 财政年份:
    2019
  • 资助金额:
    $ 22.85万
  • 项目类别:
The neural computations supporting hierarchical reinforcement learning
支持分层强化学习的神经计算
  • 批准号:
    10576384
  • 财政年份:
    2019
  • 资助金额:
    $ 22.85万
  • 项目类别:
The neural computations supporting hierarchical reinforcement learning
支持分层强化学习的神经计算
  • 批准号:
    9894854
  • 财政年份:
    2019
  • 资助金额:
    $ 22.85万
  • 项目类别:

相似海外基金

Circuit mechanisms of arbitration between distinct reinforcement learning systems
不同强化学习系统之间的仲裁电路机制
  • 批准号:
    10608739
  • 财政年份:
    2023
  • 资助金额:
    $ 22.85万
  • 项目类别:
E-Arbitration: technological innovation, due process, and fairness in international commercial arbitration
电子仲裁:国际商事仲裁的技术创新、正当程序和公平性
  • 批准号:
    23K01164
  • 财政年份:
    2023
  • 资助金额:
    $ 22.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
MCA: Arbitration between cortical and subcortical control of behavior
MCA:皮层和皮层下行为控制之间的仲裁
  • 批准号:
    2317546
  • 财政年份:
    2023
  • 资助金额:
    $ 22.85万
  • 项目类别:
    Standard Grant
Analysis of Process towards Amicable Settlement in the Proceedings of Arbitration or Mediation on International Business Disputes
国际商事纠纷仲裁或调解程序中的友好解决程序分析
  • 批准号:
    20K01319
  • 财政年份:
    2020
  • 资助金额:
    $ 22.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
MIDAS - Members of the Institute Data and Arbitration Services
MIDAS - 数据和仲裁服务协会成员
  • 批准号:
    84613
  • 财政年份:
    2020
  • 资助金额:
    $ 22.85万
  • 项目类别:
    Collaborative R&D
Arbitration between habitual and goal-directed behavior in obsessive-compulsive disorder: circuit dynamics and effects of noninvasive neurostimulation
强迫症中习惯性行为和目标导向行为之间的仲裁:回路动力学和无创神经刺激的影响
  • 批准号:
    10841221
  • 财政年份:
    2018
  • 资助金额:
    $ 22.85万
  • 项目类别:
Arbitration between habitual and goal-directed behavior in obsessive-compulsive disorder: circuit dynamics and effects of noninvasive neurostimulation
强迫症中习惯性行为和目标导向行为之间的仲裁:回路动力学和无创神经刺激的影响
  • 批准号:
    10012942
  • 财政年份:
    2018
  • 资助金额:
    $ 22.85万
  • 项目类别:
Arbitration between habitual and goal-directed behavior in obsessive-compulsive disorder: circuit dynamics and effects of noninvasive neurostimulation
强迫症中习惯性行为和目标导向行为之间的仲裁:回路动力学和无创神经刺激的影响
  • 批准号:
    9789934
  • 财政年份:
    2018
  • 资助金额:
    $ 22.85万
  • 项目类别:
Arbitration between habitual and goal-directed behavior in obsessive-compulsive disorder: circuit dynamics and effects of noninvasive neurostimulation
强迫症中习惯性行为和目标导向行为之间的仲裁:回路动力学和无创神经刺激的影响
  • 批准号:
    10237896
  • 财政年份:
    2018
  • 资助金额:
    $ 22.85万
  • 项目类别:
The Social and Psychological Underpinnings of Commercial Arbitration in Europe
欧洲商业仲裁的社会和心理基础
  • 批准号:
    ES/R005664/1
  • 财政年份:
    2018
  • 资助金额:
    $ 22.85万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了