Plasmonic Inactivation of Virus and Mycoplasma Contaminants
病毒和支原体污染物的等离子体灭活
基本信息
- 批准号:10640258
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAntibodiesBacteriaBenchmarkingBiologicalBiological ProductsBioreactorsBiotechnologyCOVID-19 pandemicCategoriesCell Culture TechniquesCell LineCellsChemicalsClinicalContainmentDangerousnessDevelopmentDiameterDiseaseDisinfectantsElectromagnetic FieldsElectromagneticsElectronicsEndotoxinsEnsureExcisionFiltrationGenerationsGoalsGoldGuidelinesHealthHumanHuman bodyImmunology procedureIndustrializationIndustryIndustry StandardInfrared RaysInvestigationLaboratoriesLasersLightMagnetismMediatingMembraneMethodsMicrobeMolecularMonoclonal AntibodiesMycoplasmaNanostructuresNanotechnologyNucleosome Core ParticleOpticsPathway interactionsPatient-Focused OutcomesPharmaceutical PreparationsPharmacologic SubstancePhotochemistryPrincipal InvestigatorProcessProductionPropertyProteinsPublic HealthRadiationReactive Oxygen SpeciesReproducibilityRiskSamplingSchemeShapesSpecificitySterilizationTechnologyTemperatureTimeTissue SampleTissuesTreatment EfficacyUltrafiltrationUltraviolet RaysViralVirionVirusVirus InactivationWorkabsorptionbactericidecostemerging antibiotic resistancefabricationflexibilityfundamental researchimprovedinnovationirradiationmagnetic fieldmanufacturemanufacturing processmanufacturing technologymicrobialmonoclonal antibody productionnanomaterialsnanoparticlenanoplasmonicpathogenpathogenic microbephotonicsplasmonicspoint of carepressurepreventprogramsresponsesuperparamagnetismultraviolet irradiation
项目摘要
SUMMARY
Biological pharmaceuticals, or “biologics”, are among the most important pharmaceuticals in development
today, and their safe manufacture is absolutely crucial for human health. A major problem faced by operators
of bioreactors, at both the laboratory scale and industrial scale, is microbial contamination as an integral risk of
any process that derives from live cell lines. The fundamental concern is to ensure that contaminated biologics
are not injected into the human body. To warrant contamination free biologics a terminal sterilization is often
necessary. The central challenge in this step is the inactivation or removal of microbial contaminates without
causing harm to the precious biologics. This work focuses on antibodies as representative biologics. Especially
for viral and mycoplasma contaminations the terminal sterilization step remains challenging due to the small
size of the pathogens. The industry standard today is removal through passive filtration using filter membranes
with pore diameters smaller or of the same size as the virus particles. This approach requires, however, long
processing times associated with high costs. Furthermore, ultrafiltration can induce antibody self-association
and is not compatible with emerging flexible, small-scale, point-of-care biologics fabrication technologies. The
need for new selective microbe inactivation strategies is also not limited to the field of biologics fabrication. The
Covid19 pandemic has recently illustrated the need for reliable virus inactivation strategies that selectively act
on the virus in tissues but not on proteins, for instance, to allow immunological assays of infected samples
outside of high containment laboratories. Light has sterilization properties, and UV-light has long been used to
inactivate a broad range of microbial pathogens. Unfortunately, it lacks specificity and also damages precious
biologics through reactive photochemistries driven by molecular absorptions in the UV range of the
electromagnetic spectrum. To overcome the shortcomings of both ultrafiltration and UV-irradiation as microbe
inactivation strategies, this proposal develops a plasmonically enhanced photonic inactivation method that
utilizes near-infrared (NIR) light for the selective inactivation of viruses and mycoplasma. As NIR radiation does
not overlap with molecular absorptions, the collateral damage on biologics is minimal. The proposed work will
reveal the fundamental working principles underlying plasmonic pathogen inactivation and implement magnetic
plasmonic nanoparticles (NPs) that allow for an easy, contact-free removal of the nanomaterials from the
samples after sterilization. The specific aims of this application are to:
Aim 1: Achieve Reliable Virus Inactivation with NIR Light through Plasmonic Enhancement
Aim 2: Demonstrate a Plasmon-Enhancement Strategy for Mycoplasma Inactivation with NIR Light
Aim 3: Demonstrate Scalable Clearance of Virus and Mycoplasma with Magnetic Plasmonic NPs
总结
生物制药,或“生物制品”,是最重要的药物开发之一
安全生产对人类健康绝对至关重要。运营商面临的一大难题
生物反应器,在实验室规模和工业规模,是微生物污染的一个整体风险,
任何源自活细胞系的过程。最根本的问题是确保受污染的生物制品
不会被注入人体。为了保证无污染的生物制品,通常
必要这一步骤的核心挑战是灭活或去除微生物污染物,
对珍贵的生物制品造成伤害。这项工作的重点是抗体作为代表性的生物制品。尤其
对于病毒和支原体污染,由于小的
病原体的大小。今天的工业标准是通过使用过滤膜的被动过滤来去除
孔径小于病毒颗粒或与病毒颗粒大小相同。然而,这种方法需要很长的时间。
与高成本相关的处理时间。此外,超滤可诱导抗体自结合
并且与新兴的灵活的、小规模的、护理点生物制剂制造技术不兼容。的
对新的选择性微生物灭活策略的需要也不限于生物制品制造领域。的
Covid 19大流行最近表明需要可靠的病毒灭活策略,
例如,对组织中的病毒而不是蛋白质进行免疫分析,
隔离实验室之外的地方光具有杀菌特性,紫外线长期以来一直被用于
包括多种微生物病原体。不幸的是,它缺乏特异性,也损害了宝贵的
生物制剂通过在紫外线范围内的分子吸收驱动的反应性光化学反应,
电磁频谱为了克服超滤法和紫外线照射法作为微生物处理的缺点,
灭活策略,该建议开发了等离子体增强的光子灭活方法,
利用近红外(NIR)光选择性灭活病毒和支原体。就像近红外辐射一样
不与分子排斥重叠,对生物制品的附带损害是最小的。拟议的工作将
揭示等离子体病原体灭活的基本工作原理,并实现磁
等离子体纳米颗粒(NP),其允许从纳米材料中容易地、无接触地去除纳米材料。
灭菌后的样品。本申请的具体目的是:
目标1:通过等离子体增强实现近红外光的可靠病毒灭活
目的2:证明用NIR光灭活支原体的等离子体增强策略
目的3:证明用磁性等离子体纳米颗粒可扩展地清除病毒和支原体
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermal transport across membranes and the Kapitza length from photothermal microscopy
跨膜热传输和光热显微镜的 Kapitza 长度
- DOI:10.1007/s10867-023-09636-0
- 发表时间:2023
- 期刊:
- 影响因子:1.8
- 作者:Samolis, Panagis D.;Sander, Michelle Y.;Hong, Mi K.;Erramilli, Shyamsunder;Narayan, Onuttom
- 通讯作者:Narayan, Onuttom
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHYAMSUNDER ERRAMILLI其他文献
SHYAMSUNDER ERRAMILLI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHYAMSUNDER ERRAMILLI', 18)}}的其他基金
Plasmonic Inactivation of Virus and Mycoplasma Contaminants
病毒和支原体污染物的等离子体灭活
- 批准号:
10179915 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Plasmonic Inactivation of Virus and Mycoplasma Contaminants
病毒和支原体污染物的等离子体灭活
- 批准号:
10455426 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
INFRARED MICROSPECTROSCOPE WITH 100 NM RESOLUTION
分辨率为 100 nm 的红外显微镜
- 批准号:
6056757 - 财政年份:1998
- 资助金额:
$ 33万 - 项目类别:
INFRARED MICROSPECTROSCOPE WITH 100 NM RESOLUTION
分辨率为 100 nm 的红外显微镜
- 批准号:
2716977 - 财政年份:1998
- 资助金额:
$ 33万 - 项目类别:
相似海外基金
Developing protective monoclonal antibodies against Gram- and Gram+ bacteria
开发针对革兰氏菌和革兰氏菌的保护性单克隆抗体
- 批准号:
10162826 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Developing protective monoclonal antibodies against Gram- and Gram+ bacteria
开发针对革兰氏菌和革兰氏菌的保护性单克隆抗体
- 批准号:
10577803 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Developing protective monoclonal antibodies against Gram- and Gram+ bacteria
开发针对革兰氏菌和革兰氏菌的保护性单克隆抗体
- 批准号:
10352467 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Strategies for generating high affinity antibodies against Gram negative bacteria
产生针对革兰氏阴性菌的高亲和力抗体的策略
- 批准号:
10117194 - 财政年份:2020
- 资助金额:
$ 33万 - 项目类别:
Investigating the effect of serum antibodies to periodontal bacteria on cardiorenal association
研究牙周细菌血清抗体对心肾关联的影响
- 批准号:
26861827 - 财政年份:2014
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development of rapid and simple diagnostic assays for 10 food poisoning bacteria and viruses using monoclonal antibodies
使用单克隆抗体开发针对 10 种食物中毒细菌和病毒的快速、简单的诊断方法
- 批准号:
26460807 - 财政年份:2014
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The utility of serum IgG antibodies of periodontal pathogenic bacteria for obese patients treated for weight loss
牙周病原菌血清IgG抗体在肥胖患者减肥治疗中的应用
- 批准号:
25862052 - 财政年份:2013
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Studies on rapid detection methods for multi-drug resistant bacteria by using specific antibodies
特异性抗体快速检测多重耐药菌方法的研究
- 批准号:
23659306 - 财政年份:2011
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Development of rapid and simple diagnostic assays for food poisoning bacteria and viruses using monoclonal antibodies
使用单克隆抗体开发快速、简单的食物中毒细菌和病毒诊断方法
- 批准号:
23590749 - 财政年份:2011
- 资助金额:
$ 33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)