AMPAR Function in Synaptic and Extrasynaptic Membranes
AMPAR 在突触和突触外膜中的功能
基本信息
- 批准号:10640949
- 负责人:
- 金额:$ 42.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AMPA ReceptorsAddressAdultAffectAffinityAgonistBindingBiological ModelsBiophysicsBrainBrain DiseasesCalciumCell membraneCellsCentral Nervous SystemCerebellumCharacteristicsDataDependenceDevelopmentDiseaseExhibitsFiberFrequenciesFrightGenetic TranscriptionGlutamate ReceptorGlutamatesGoalsImageInterneuronsKnowledgeLigand BindingLiteratureLocationMediatingModelingMolecularNeuronsPathologyPatternPermeabilityPharmacologyPhenotypePhysiologyPolyaminesPropertyProteinsProxyRegulationResolutionRoleSignal TransductionSiteSliceSourceSpermineStressStructureSynapsesSynaptic MembranesSynaptic TransmissionSystemTestingToxinVisitantagonistbehavior predictionbiophysical propertieschannel blockersexperiencegenetic manipulationindexinginsightnovelpostsynapticpresynapticpreventreceptorreceptor bindingreceptor functionsegregationsimulationtraffickingtwo photon microscopytwo-photonvoltage
项目摘要
AMPA receptors (AMPARs) mediate the majority of excitatory glutamatergic synaptic transmission in the
central nervous system. Most AMPARs, once bound to glutamate, allow Na+ and K+ flux across the cell
membrane, causing neurons to depolarize. However, AMPARs that lack the GluR2 subunit are also permeable
to Ca2+. These Ca2-permeable (CP) AMPARs are highly expressed during development when they are
essential for activity-dependent plasticity, and this function persists at some synapses throughout adulthood. A
biophysical characteristic known as rectification is commonly used to differentiate CP-AMPARs from Ca2+-impermeable (CI) AMPARs. Whereas CP-AMPARs exhibit strong inward rectification, CI-AMPA receptors
display linear current-voltage relationships. Inward rectification of CP-AMPARs results from intracellular
polyamines that act as open channel blockers to prevent outward current flux. Thus, inward rectification and
sensitivity to antagonists that bind at the polyamine site provide biophysical signatures of AMPAR subunit
composition and hence Ca2+ permeability, and these characteristics have been widely used to establish rules
of AMPAR subunit plasticity. Molecular layer interneurons of the cerebellum provide a well-established model
system for understanding AMPAR localization and trafficking because repetitive synaptic stimulation or a single
experience of fear triggers a form of plasticity called subunit-switching wherein CP-AMPARs at synapses are
replaced by CI-AMPARs from a pool of extrasynaptic AMPARs. Although rectification index and sensitivity to
polyamine site toxins are widely used to distinguish between GluR2-containing and -lacking AMPARs, there
are many examples from the literature that show these biophysical properties do not exclusively reflect subunit
composition. A separate literature has converged on gating models of AMPARs that include multiple
conductance states, but the functional implications are unclear. Now, our preliminary data show that CP-AMPAR rectification and pharmacology are sensitive to factors that regulate AMPAR conductance states,
potentially complicating the interpretation of results using these biophysical properties as sole proxies of
subunit composition. We propose to understand how the multiple sub-conductance states of AMPARs
contribute to the hallmark biophysical properties CP-AMPARs. We will use high resolution Ca2+ imaging,
heterologous expression systems and genetic manipulation to understand regulation of CP-AMPAR
biophysical properties and use that understanding to critically evaluate CP-AMPAR localization and plasticity in
cerebellar molecular layer interneurons.
AMPAR subunit composition has important functional consequences,
ranging from regulating the ability of postsynaptic cells to precisely follow high-frequency synaptic activity and
mediating Ca2+ influx that can trigger plasticity or pathology. Successful completion of the proposed studies will
reveal novel properties of AMPARs that are essential for understanding their function within synapses and
intact circuits in the normal and diseased brain.
AMPA受体(AMPAR)介导了大多数兴奋性突触传递,
中枢神经系统大多数AMPAR一旦与谷氨酸结合,就允许Na+和K+穿过细胞
膜,导致神经元去极化。然而,缺乏GluR 2亚基的AMPAR也是可渗透的。
Ca2+。这些Ca 2-可渗透(CP)AMPAR在发育过程中高度表达,当它们被激活时,
这对活动依赖性可塑性至关重要,并且这种功能在整个成年期持续存在于一些突触中。一
称为整流的生物物理特性通常用于区分CP-AMPAR与Ca 2+不可渗透(CI)AMPAR。而CP-AMPAR表现出强烈的内向整流,CI-AMPA受体
显示线性电流-电压关系。CP-AMPAR的内向整流是由细胞内的
多胺作为开放通道阻断剂,以防止外向电流通量。因此,向内纠正和
对结合在多胺位点的拮抗剂的敏感性提供了AMPAR亚基的生物物理特征
组成,因此Ca 2+渗透性,这些特征已被广泛用于建立规则
AMPAR亚基可塑性的影响。小脑的分子层中间神经元提供了一个完善的模型
用于理解AMPAR定位和运输的系统,因为重复的突触刺激或单个
恐惧的经历触发了一种称为亚单位转换的可塑性,其中突触上的CP-AMPAR被
由来自突触外AMPAR池的CI-AMPAR替代。虽然整流指数和敏感性,
多胺位点毒素被广泛用于区分含GluR 2和缺乏GluR 2的AMPAR,
文献中有许多例子表明,这些生物物理特性并不完全反映亚基
混合物.一个单独的文献已经集中在AMPAR的门控模型,包括多个
电导状态,但功能影响尚不清楚。现在,我们的初步数据表明,CP-AMPAR整流和药理学对调节AMPAR电导状态的因素敏感,
潜在地使使用这些生物物理特性作为唯一的替代物的结果的解释复杂化,
亚基组成我们建议理解AMPAR的多个亚电导态
有助于标志性的生物物理性质CP-AMPAR。我们将使用高分辨率的钙离子成像,
异源表达系统和遗传操作以了解CP-AMPAR的调节
生物物理特性,并使用这种理解来批判性地评估CP-AMPAR的定位和可塑性,
小脑分子层中间神经元。
AMPAR亚基组成具有重要的功能后果,
从调节突触后细胞的能力到精确地跟踪高频突触活动,
介导可触发可塑性或病理学的Ca 2+内流。成功完成拟议的研究将
揭示了AMPAR的新特性,这些特性对于理解它们在突触内的功能至关重要,
正常和病变大脑中的完整回路
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jacques Wadiche其他文献
Jacques Wadiche的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jacques Wadiche', 18)}}的其他基金
Cocaine Modulation of Synapses onto Dopamine Neurons
可卡因对多巴胺神经元突触的调节
- 批准号:
10041862 - 财政年份:2020
- 资助金额:
$ 42.31万 - 项目类别:
Cocaine Modulation of Synapses onto Dopamine Neurons
可卡因对多巴胺神经元突触的调节
- 批准号:
10197089 - 财政年份:2020
- 资助金额:
$ 42.31万 - 项目类别:
AMPAR Function in Synaptic and Extrasynaptic Membranes
AMPAR 在突触和突触外膜中的功能
- 批准号:
10449974 - 财政年份:2019
- 资助金额:
$ 42.31万 - 项目类别:
AMPAR Function in Synaptic and Extrasynaptic Membranes
AMPAR 在突触和突触外膜中的功能
- 批准号:
10018120 - 财政年份:2019
- 资助金额:
$ 42.31万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 42.31万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 42.31万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 42.31万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 42.31万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 42.31万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 42.31万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 42.31万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 42.31万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 42.31万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 42.31万 - 项目类别:
Research Grant














{{item.name}}会员




