A Roadmap to Uncover RPE Plasticity
揭示 RPE 可塑性的路线图
基本信息
- 批准号:10639436
- 负责人:
- 金额:$ 36.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAcuteAddressAtlasesBehaviorBindingBinding SitesBiological AssayCRISPR/Cas technologyCell Differentiation processCell NucleusCellsChick EmbryoChicken CellsChickensChromatinChromosome MappingCompetenceDNADNA BindingDNA MethylationDNA Modification ProcessDNA mappingData AnalysesData SetDevelopmentEmbryoEpigenetic ProcessEventEyeFGF2 geneFoundationsGene Expression RegulationGenesGenetic TranscriptionGenome MappingsGoalsIntentionMapsMethodologyMethodsMolecularMolecular ProbesNatural regenerationNerve RegenerationNeural RetinaPatternPhenotypePublic HealthRegulator GenesReplacement TherapyRepressionResolutionRetinaRetinal DegenerationRoleSeriesSourceStructure of retinal pigment epitheliumTimeVisionadult neurogenesisblastomere structurecell typeembryo cellepithelial stem cellgenome-widegenome-wide analysishistone modificationinnovationinsightloss of functionmultimodal datamultimodalityneuralneuronal replacementnovelpermissivenessprogramsregeneration potentialresponserestorationretinal neuronretinal regenerationsingle nucleus RNA-sequencingtranscription factortranscriptometranscriptome sequencingtranscriptomics
项目摘要
Abstract
Degenerative retinal diseases represent an enormous public health burden and demand innovative strategies to
replace retinal neurons. Ideal solutions will overcome innate barriers associated with terminal differentiation to
endogenously regenerate retinal neurons. Retinal pigment epithelium (RPE) cells hold promise for this
application, as these cells can reprogram to produce neural retina in embryonic amniotes. For reasons that are
not well understood, RPE cells lose neural competence during early amniotic development. The present study
proposes to comprehensively map the gene regulatory landscape of RPE at plastic stages of development and
to probe the molecular barriers to reprogramming that emerge as these cells differentiate. RPE cells of the
chicken are plastic at embryonic day 4 (E4) and can be reprogrammed to neural retina following retinectomy and
treatment with FGF2. However, by embryonic day 5 (E5), RPE cell fate becomes restricted and reprogramming
capacity is abrogated. Previous studies have demonstrated that E4 RPE cells reprogram through the activation
of neural retina transcription factors, such as VSX2, SIX6, and PAX6, and the simultaneous repression of RPE
differentiation programs. Concomitantly, an epigenetic reprogramming event resets DNA methylation and poises
chromatin into a more active configuration to facilitate the ensuing change in cell identity. However, it is not
understood how transcription factor networks interact with a dynamic chromatin landscape to determine RPE
neural competence. Our preliminary evidence suggests that pro-neural genes remain comparably inducible in
the E5 RPE, but that an incipient RPE differentiation program serves as an inherent barrier to neural identity at
this stage. This differentiation program is led by the RPE transcription factors MITF and OTX2, and distinct
accessibility footprints from these factors are observable in the chromatin landscape. The current proposal will
build on these findings by mapping genome-wide epigenetic patterns associated with RPE competence
restriction, including DNA and histone modifications that have been previously demonstrated to facilitate RPE
reprogramming (Aim 1). Additionally, RPE differentiation and reprogramming will be profiled at a single cell
resolution, enabling the precise identification of transcriptomic features that delineate plastic and fate restricted
RPE (Aim 2). In parallel, the DNA binding activity of key effector transcription factors, such as MITF and OTX2,
will be profiled across the RPE at different stages of differentiation or reprogramming. These factors, as well as
key transcriptional targets, will be perturbed using CRISPR-Cas9 with the intention of recovering RPE neural
competence at more advanced stages of differentiation (Aim 3). Together, these findings will provide an
expansive view of chromatin states associated with RPE competence restriction, while simultaneously probing
the chromatin – transcription factor interactions that drive the observed phenotypes. These results will provide
imperative insights toward understanding RPE differentiation and the potentiality of this cell type for use in neuron
replacement strategies.
摘要
退行性视网膜疾病是一个巨大的公共卫生负担,需要创新的策略,
替换视网膜神经元。理想的解决方案将克服与终端差异化相关的先天障碍,
内源性再生视网膜神经元。视网膜色素上皮(RPE)细胞对此有希望
这些细胞可以重新编程,在胚胎视网膜中产生神经视网膜。其原因
不太清楚的是,RPE细胞在早期羊膜发育过程中丧失神经能力。本研究
建议全面绘制发育可塑性阶段RPE的基因调控图谱,
以探测这些细胞分化时出现的重编程的分子障碍。视网膜色素上皮细胞
鸡在胚胎第4天(E4)是可塑的,并且可以在视网膜切除术后重编程为神经视网膜,
用FGF 2治疗然而,到胚胎第5天(E5),RPE细胞的命运变得受限,
能力被废除。先前的研究表明,E4 RPE细胞通过激活
神经视网膜转录因子,如VSX 2,SIX 6和PAX 6,以及RPE的同时抑制
差异化计划。同时,表观遗传重编程事件重置DNA甲基化和平衡,
染色质转化为更活跃的构型,以促进细胞身份的随后变化。但不
了解转录因子网络如何与动态染色质景观相互作用,以确定RPE
神经能力我们的初步证据表明,前神经基因仍然是可诱导的,
E5 RPE,但早期的RPE分化程序作为一个内在的障碍,神经身份,
现阶段这种分化程序由RPE转录因子MITF和OTX 2引导,并且与其他细胞分化程序不同。
来自这些因子的可接近性足迹在染色质景观中是可观察到的。目前的提案将
通过绘制与RPE能力相关的全基因组表观遗传模式,
限制,包括DNA和组蛋白修饰,这些修饰先前已被证明有助于RPE
重编程(Aim 1)。此外,将在单个细胞中分析RPE分化和重编程。
分辨率,能够精确识别描述可塑性和命运限制的转录组学特征
RPE(目标2)。同时,关键效应转录因子如MITF和OTX 2的DNA结合活性,
将在分化或重编程的不同阶段跨RPE进行分析。这些因素,以及
关键的转录靶点,将使用CRISPR-Cas9进行干扰,目的是恢复RPE神经元
在更高级的分化阶段的能力(目标3)。总之,这些发现将提供一个
与RPE能力限制相关的染色质状态的扩展视图,同时探索
染色质-转录因子的相互作用驱动观察到的表型。这些结果将提供
了解RPE分化和这种细胞类型用于神经元的潜力的必要见解
替代战略。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katia Del Rio-Tsonis其他文献
Katia Del Rio-Tsonis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katia Del Rio-Tsonis', 18)}}的其他基金
Inflammation is a driver of newt lens regeneration
炎症是蝾螈晶状体再生的驱动因素
- 批准号:
10705582 - 财政年份:2022
- 资助金额:
$ 36.13万 - 项目类别:
Inflammation is a driver of newt lens regeneration
炎症是蝾螈晶状体再生的驱动因素
- 批准号:
10433462 - 财政年份:2022
- 资助金额:
$ 36.13万 - 项目类别:
In vivo imaging of newt lens regeneration: Novel molecular, cellular and functional insights
蝾螈晶状体再生的体内成像:新颖的分子、细胞和功能见解
- 批准号:
10250409 - 财政年份:2020
- 资助金额:
$ 36.13万 - 项目类别:
In vivo imaging of newt lens regeneration: Novel molecular, cellular and functional insights
蝾螈晶状体再生的体内成像:新颖的分子、细胞和功能见解
- 批准号:
10043483 - 财政年份:2020
- 资助金额:
$ 36.13万 - 项目类别:
The role of Injury signals in RPE Reprogramming
损伤信号在 RPE 重编程中的作用
- 批准号:
9902450 - 财政年份:2016
- 资助金额:
$ 36.13万 - 项目类别:
The role of Injury signals in RPE Reprogramming
损伤信号在 RPE 重编程中的作用
- 批准号:
9129196 - 财政年份:2016
- 资助金额:
$ 36.13万 - 项目类别:
The role of Injury signals in RPE Reprogramming
损伤信号在 RPE 重编程中的作用
- 批准号:
9246537 - 财政年份:2016
- 资助金额:
$ 36.13万 - 项目类别:
Retinal Pigmented Epithelium Reprogramming and Retina Regeneration
视网膜色素上皮重编程和视网膜再生
- 批准号:
8598851 - 财政年份:2013
- 资助金额:
$ 36.13万 - 项目类别:
Retinal Pigmented Epithelium Reprogramming and Retina Regeneration
视网膜色素上皮重编程和视网膜再生
- 批准号:
8712501 - 财政年份:2013
- 资助金额:
$ 36.13万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 36.13万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 36.13万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 36.13万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 36.13万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 36.13万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 36.13万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 36.13万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 36.13万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 36.13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 36.13万 - 项目类别:
Standard Grant