Impacts of structural racism on racial and ethnic disparities in perinatal health
结构性种族主义对围产期健康种族和民族差异的影响
基本信息
- 批准号:10637373
- 负责人:
- 金额:$ 55.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-03 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:Air PollutionAmerican College of Obstetricians and GynecologistsBehaviorBioinformaticsBiometryBirthBlack raceCitiesColorCommunitiesComplexCountyCriminal JusticeDiscipline of obstetricsDiscriminationDisparityElectronic Health RecordEnvironmental EpidemiologyEnvironmental ExposureEtiologyExposure toFoundationsFutureGeneticGestational DiabetesHazardous Waste SitesHealthHealth Disparities ResearchHealth Services AccessibilityHispanicHospitalsHousingHypertensionImprisonmentIndustryInfantInterventionJointsLife Cycle StagesLow Birth Weight InfantMaternal and Child HealthMaternal-fetal medicineMedicineMexicanMothersNational Institute of Child Health and Human DevelopmentNational Institute of Environmental Health SciencesNational Institute on Minority Health and Health DisparitiesNeighborhoodsNot Hispanic or LatinoOutcomePerinatal EpidemiologyPersonal SatisfactionPolicePoliciesPregnancyPregnancy OutcomePregnancy in DiabeticsPregnant WomenPremature BirthPrevalencePropertyReportingResearchResourcesRetrospective cohort studyRiskRoleSocial SciencesSourceStressStructural RacismSystemTexasUniversitiesViolenceWater PollutionWomanWomen&aposs HealthWorkadverse outcomeadverse pregnancy outcomeblack womencohortcollegecommunity burdeneconomic costenvironmental health disparityethnic disparityexperiencefollow-uphealth disparityhealth inequalitieshigh riskimprovedmachine learning methodmaternal hypertensionmaternal morbiditymedical schoolspeople of colorperinatal healthperinatal outcomesracial disparityracismresidential segregationsegregationsocietal costssoil pollutionstressorwomen of color
项目摘要
ABSTRACT
Women of color have higher rates of poor pregnancy outcomes than non-Hispanic whites in the U.S. For
example, the prevalence of preterm birth is 14.4%, 10.0% and 9.3% among Black, Hispanic, and non-Hispanic
white mothers, respectively. Hispanic and Black women are also at higher risk of maternal morbidities such as
hypertension in pregnancy and gestational diabetes. Along with the compelling evidence of the impact of adverse
perinatal health on the health of a mother and her infant throughout the life course comes high societal and
economic costs. Yet, the etiology of adverse pregnancy outcomes among women of color is not fully explained
by genetics, behavior, or access to care and other factors, including structural racism, likely play a role.
Historically, communities of color have been, and continue to be, burdened by downstream effects of redlining
practices, including housing discrimination and neighborhood segregation. Given the proximity of their
neighborhoods to key sources of air, water, and soil pollution (another consequence of redlining), communities
of color also experience environmental racism, i.e., a disproportionate burden of environmental exposures.
Moreover, women in high-risk communities are subject to spillover stress from disproportionate policing, police
violence, arrests, and incarceration. While there is growing evidence of the impact of structural racism on
perinatal health, findings are equivocal, and research related to the joint impact of multiple forms of structural
racism is lacking. In this application, we will assess the independent effects of structural racism across multiple
domains on racial/ethnic disparities in both maternal morbidity (hypertension in pregnancy and gestational
diabetes) and adverse pregnancy outcomes (low birth weight and preterm birth), explore whether combined
exposures to multiple domains of structural racism enhance disparities, and apply machine learning methods to
identify the key structural racism predictors of adverse perinatal health outcomes. To achieve our aims, we will
construct a retrospective birth cohort of women who delivered infants at major obstetric hospitals in the 3rd largest
county (Harris) in the U.S. (where Houston is located) that will include follow-up throughout a mother’s pregnancy
to the birth of her infant. Our project leverages established partnerships among Baylor College of Medicine,
UTHealth McGovern Medical School, and Texas Southern University through our NIMHD/NIEHS/NICHD P50
Center of Excellence on Environmental Health Disparities Research, focused on reducing environmental health
disparities in maternal and child health, and draws on our collective expertise in environmental and perinatal
epidemiology, women’s health, maternal-fetal medicine, criminal justice, social science, biostatistics, and
bioinformatics. This work is expected to elucidate the contribution of structural racism across multiple domains
on racial/ethnic disparities in several key perinatal health outcomes. Importantly, the results from this study will
also enhance our understanding of the complex interplay and identification of key structural racism drivers of
perinatal health disparities and lay the foundation for future studies to promote interventions.
摘要
在美国,有色人种女性的不良妊娠结局率高于非西班牙裔白人。
例如,黑人、西班牙裔和非西班牙裔的早产率分别为14.4%、10.0%和9.3
白色母亲。西班牙裔和黑人妇女也有较高的风险,孕产妇发病率,如
妊娠期高血压和妊娠期糖尿病。沿着令人信服的证据表明,
围产期保健对母亲及其婴儿一生健康的影响在社会上十分重要,
经济成本。然而,有色人种妇女不良妊娠结局的病因尚未得到充分解释
遗传、行为或获得护理的机会以及其他因素,包括结构性种族主义,可能发挥了作用。
从历史上看,有色人种社区一直并将继续受到红线下游效应的影响
包括住房歧视和邻里隔离。考虑到他们的距离
社区到空气,水和土壤污染的主要来源(红线的另一个后果),社区
也经历了环境种族主义,即,不成比例的环境暴露负担。
此外,高风险社区的妇女还受到不成比例的警务、警察和警察的过度干预的压力。
暴力,逮捕和监禁。虽然有越来越多的证据表明结构性种族主义的影响,
围产期健康,调查结果是模棱两可的,和研究有关的多种形式的结构性疾病的联合影响,
缺乏种族主义。在这个应用程序中,我们将评估结构性种族主义在多个国家的独立影响。
在孕产妇发病率(妊娠期高血压和妊娠期高血压)和
糖尿病)和不良妊娠结局(低出生体重和早产),探讨是否结合
暴露于结构性种族主义的多个领域会加剧不平等,并将机器学习方法应用于
确定不利的围产期健康结果的关键结构性种族主义预测因素。为了实现我们的目标,我们将
对在第三大城市的主要产科医院分娩的妇女进行回顾性出生队列研究,
在美国的一个县(哈里斯县)(休斯顿所在地),将包括在母亲怀孕期间的随访
她孩子的出生我们的项目利用贝勒医学院之间建立的伙伴关系,
UTHealth麦戈文医学院和德克萨斯南方大学通过我们的NIMHD/NIEHS/NICHD P50
环境健康差异研究卓越中心,专注于减少环境健康
在孕产妇和儿童健康的差距,并利用我们的集体专长,在环境和围产期
流行病学,妇女健康,母胎医学,刑事司法,社会科学,生物统计学,
生物信息学这项工作有望阐明结构性种族主义在多个领域的贡献
在几个关键的围产期健康结果的种族/民族差异。重要的是,这项研究的结果将
还加强我们对复杂的相互作用的理解,并确定关键的结构性种族主义驱动因素,
围产期健康差异,并为今后的研究奠定基础,以促进干预措施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ELAINE SYMANSKI其他文献
ELAINE SYMANSKI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ELAINE SYMANSKI', 18)}}的其他基金
Project 2: Disparities-Aware Classifiers for Maternal and Infant Health
项目 2:母婴健康差异感知分类器
- 批准号:
10218043 - 财政年份:2020
- 资助金额:
$ 55.62万 - 项目类别:
Maternal and Infant Environmental Health Riskscape (MIEHR) Research Center
母婴环境健康风险景观(MIEHR)研究中心
- 批准号:
10062083 - 财政年份:2020
- 资助金额:
$ 55.62万 - 项目类别:
Maternal and Infant Environmental Health Riskscape (MIEHR) Research Center
母婴环境健康风险景观(MIEHR)研究中心
- 批准号:
10376060 - 财政年份:2020
- 资助金额:
$ 55.62万 - 项目类别:
Project 2: Disparities-Aware Classifiers for Maternal and Infant Health
项目 2:母婴健康差异感知分类器
- 批准号:
10376065 - 财政年份:2020
- 资助金额:
$ 55.62万 - 项目类别:
Maternal and Infant Environmental Health Riskscape (MIEHR) Research Center
母婴环境健康风险景观(MIEHR)研究中心
- 批准号:
10218035 - 财政年份:2020
- 资助金额:
$ 55.62万 - 项目类别:
Maternal and Infant Environmental Health Riskscape (MIEHR) Research Center
母婴环境健康风险景观(MIEHR)研究中心
- 批准号:
10602529 - 财政年份:2020
- 资助金额:
$ 55.62万 - 项目类别:
Project 2: Disparities-Aware Classifiers for Maternal and Infant Health
项目 2:母婴健康差异感知分类器
- 批准号:
10062088 - 财政年份:2020
- 资助金额:
$ 55.62万 - 项目类别:
相似海外基金
AMERICAN COLLEGE OF OBSTETRICIANS AND GYNECOLOGISTS PARTNERSHIP FOR FASD PREVENTION
美国妇产科学院合作预防胎儿酒精谱系障碍
- 批准号:
8849159 - 财政年份:2014
- 资助金额:
$ 55.62万 - 项目类别: