Structure and Function of Non-Conventional Caveolins
非常规小窝蛋白的结构和功能
基本信息
- 批准号:10638902
- 负责人:
- 金额:$ 73.09万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdipose tissueBiochemicalBiogenesisBiologicalBiological AssayBiological ProcessBiophysicsCardiovascular DiseasesCardiovascular PhysiologyCardiovascular systemCaveolaeCaveolinsCell AdhesionCell Differentiation processCell membraneCell physiologyCell surfaceCellsCholesterolComplexCryoelectron MicroscopyCytoplasmDataDefectDevelopmentDiseaseElectron MicroscopyExhibitsFamilyFamily memberGeometryHeartHomeostasisHomoHumanIn VitroIntracellular TransportInvestigationKnowledgeLearningLinkLipidsLipodystrophyLungMalignant NeoplasmsMechanical StressMediatingMembraneMembrane BiologyMembrane ProteinsMetabolismModelingMoldsMolecularMorphologyMusMuscleMuscular DystrophiesMutationNatural SelectionsNaturePathway interactionsPhysiologicalPhysiologyPlayProcessPropertyProteinsProtomerResearch PersonnelResolutionRoleShapesSideSignal PathwaySignal TransductionStructureSurfaceSystemic diseaseTestingTissuesbasebiophysical propertiesbody systemcaveolin 1caveolin-2caveolin-3cell motilitycell typeflasksinsightmechanotransductionmembrane modelmolecular dynamicsparticleprotein functionpulmonary arterial hypertensionpulmonary functionsensortrafficking
项目摘要
Caveolins are a family of unusual membrane proteins that function as key regulators of the cardiovascular
system and metabolism. One of their major biological activities is to shape the plasma membrane to form
flask-shaped invaginations called caveolae. Defects in caveolins and caveolae have dramatic physiological
consequences and disrupt intracellular trafficking, signaling, lipid homeostasis, mechanosensing, and plasma
membrane integrity at the cellular level. How caveolins and caveolae regulate so many different cellular
functions has remained a mystery for nearly 30 years, in part due to the lack of information about the structure
of caveolins. Excitingly, the status quo recently changed. Using cryo-electron microscopy, we have now
determined the first high-resolution structure of the caveolin family member responsible for caveolae
biogenesis outside of muscle, caveolin-1 (CAV1). Consisting of 11 tightly packed protomers arranged in a
disc, the structure represents an oligomeric state of the protein that serves as the fundamental building block of
caveolae. It is thus now possible to begin to address how caveolae form and function at a mechanistic level.
Here, we propose to build on lessons learned from determining the structure of CAV1 to tackle another
ongoing conundrum in the field. Either as a consequence of disease-associated mutations or as a result of
natural selection, some caveolins are unable to generate caveolae on their own. Remarkably, these “non-
conventional” caveolins can still have profound effects on caveolae assembly and dynamics and even exert
distinct biological functions. How does this happen? To gain insight into this long-standing question, we
propose to compare and contrast the properties of CAV1 with caveolin-2 (CAV2), an evolutionarily conserved,
naturally occurring example of a caveolin that can only form caveolae in the presence of CAV1 and is required
for normal physiological function of the lung. Using a combination of structural, biochemical, biophysical,
computational, and cell biological assays, we will 1) determine how the unique structural features of CAV2
dictate its interactions with itself, CAV1, and other proteins and 2) study mechanisms used by caveolin
complexes to associate with and bend membranes and mediate plasma membrane homeostasis. These
studies will provide critical insights into how caveolins interact with themselves and one another to form the
building blocks of caveolae as well as how the distinct structural features of caveolin family members dictate
their biological functions by controlling their repertoire of interacting proteins and lipids. On a more
fundamental level, the proposed investigations will test new ideas about how proteins insert into membranes
and how this influences their ability to mold membrane morphology, composition, and function.
Caveolins是一个不寻常的膜蛋白家族,作为心血管系统的关键调节因子发挥作用。
系统和新陈代谢。它们的主要生物学活动之一是塑造质膜以形成
瓶状内陷称为小窝。小窝蛋白和小窝的缺陷具有显著的生理学意义,
结果并破坏细胞内运输、信号传导、脂质稳态、机械传感和血浆
细胞膜的完整性。小窝蛋白和小窝是如何调节这么多不同的细胞
近30年来,功能一直是个谜,部分原因是缺乏有关结构的信息。
caveolins。令人兴奋的是,现状最近发生了变化。利用低温电子显微镜,我们现在
确定了负责小窝的小窝蛋白家族成员的第一个高分辨率结构
肌外生物发生,Caveolin-1(CAV 1)。由11个紧密排列的原聚体组成
盘,该结构代表蛋白质的低聚状态,其作为蛋白质的基本构建块。
小窝因此,现在有可能开始在机械水平上解决窖的形成和功能。
在这里,我们建议在确定CAV 1结构的基础上,
这个领域的难题无论是作为疾病相关突变的结果,还是作为
在自然选择中,一些小窝蛋白不能自己产生小窝。值得注意的是,这些“非-
传统的”小窝“仍然可以对小窝的组装和动力学产生深远的影响,
不同的生物功能。这是怎么发生的?为了深入了解这个长期存在的问题,我们
建议比较和对比caveolin-2(caveolin-2,caveolin-2)的性质,caveolin-2是一种进化保守的,
天然存在的小窝蛋白的实例,其只能在存在CAV 1的情况下形成小窝,
肺的正常生理功能。利用结构,生物化学,生物物理,
计算和细胞生物学测定,我们将1)确定CAV 2的独特结构特征如何
决定其与自身,CAV 1和其他蛋白质的相互作用,2)研究小窝蛋白使用的机制
复合物与膜结合并使膜弯曲并介导质膜稳态。这些
研究将提供关键的见解,了解窖蛋白如何与自己和彼此相互作用,以形成
以及小窝蛋白家族成员的独特结构特征如何决定
它们通过控制相互作用的蛋白质和脂质的库来实现其生物学功能。走上更
在基础水平上,拟议的研究将测试有关蛋白质如何插入膜的新想法
以及这如何影响它们塑造膜形态、组成和功能的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anne K Kenworthy其他文献
Anne K Kenworthy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anne K Kenworthy', 18)}}的其他基金
Small Molecule Tools for Modulating Membrane Rafts
用于调节膜筏的小分子工具
- 批准号:
10474445 - 财政年份:2020
- 资助金额:
$ 73.09万 - 项目类别:
Small Molecule Tools for Modulating Membrane Rafts
用于调节膜筏的小分子工具
- 批准号:
10250522 - 财政年份:2020
- 资助金额:
$ 73.09万 - 项目类别:
Small Molecule Tools for Modulating Membrane Rafts
用于调节膜筏的小分子工具
- 批准号:
10029455 - 财政年份:2020
- 资助金额:
$ 73.09万 - 项目类别:
Structural basis for caveolae assembly and function
小窝组装和功能的结构基础
- 批准号:
9925038 - 财政年份:2018
- 资助金额:
$ 73.09万 - 项目类别:
Roles of Cholesterol and Membrane Nanodomains in the Amyloidogenic Pathway
胆固醇和膜纳米结构域在淀粉样蛋白生成途径中的作用
- 批准号:
9333750 - 财政年份:2017
- 资助金额:
$ 73.09万 - 项目类别:
Function and assembly of toxin-stabilized domains
毒素稳定结构域的功能和组装
- 批准号:
8532431 - 财政年份:2013
- 资助金额:
$ 73.09万 - 项目类别:
Function and assembly of toxin-stabilized domains
毒素稳定结构域的功能和组装
- 批准号:
9925238 - 财政年份:2013
- 资助金额:
$ 73.09万 - 项目类别:
Function and assembly of toxin-stabilized domains
毒素稳定结构域的功能和组装
- 批准号:
8843013 - 财政年份:2013
- 资助金额:
$ 73.09万 - 项目类别:
Function and assembly of toxin-stabilized domains
毒素稳定结构域的功能和组装
- 批准号:
9403684 - 财政年份:2013
- 资助金额:
$ 73.09万 - 项目类别:
相似海外基金
Deciphering the role of adipose tissue in common metabolic disease via adipose tissue proteomics
通过脂肪组织蛋白质组学解读脂肪组织在常见代谢疾病中的作用
- 批准号:
MR/Y013891/1 - 财政年份:2024
- 资助金额:
$ 73.09万 - 项目类别:
Research Grant
ESTABLISHING THE ROLE OF ADIPOSE TISSUE INFLAMMATION IN THE REGULATION OF MUSCLE MASS IN OLDER PEOPLE
确定脂肪组织炎症在老年人肌肉质量调节中的作用
- 批准号:
BB/Y006542/1 - 财政年份:2024
- 资助金额:
$ 73.09万 - 项目类别:
Research Grant
Canadian Alliance of Healthy Hearts and Minds: Dissecting the Pathways Linking Ectopic Adipose Tissue to Cognitive Dysfunction
加拿大健康心灵联盟:剖析异位脂肪组织与认知功能障碍之间的联系途径
- 批准号:
479570 - 财政年份:2023
- 资助金额:
$ 73.09万 - 项目类别:
Operating Grants
Determinants of Longitudinal Progression of Adipose Tissue Inflammation in Individuals at High-Risk for Type 2 Diabetes: Novel Insights from Metabolomic Profiling
2 型糖尿病高危个体脂肪组织炎症纵向进展的决定因素:代谢组学分析的新见解
- 批准号:
488898 - 财政年份:2023
- 资助金额:
$ 73.09万 - 项目类别:
Operating Grants
Activation of human brown adipose tissue using food ingredients that enhance the bioavailability of nitric oxide
使用增强一氧化氮生物利用度的食品成分激活人体棕色脂肪组织
- 批准号:
23H03323 - 财政年份:2023
- 资助金额:
$ 73.09万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of new lung regeneration therapies by elucidating the lung regeneration mechanism of adipose tissue-derived stem cells
通过阐明脂肪组织干细胞的肺再生机制开发新的肺再生疗法
- 批准号:
23K08293 - 财政年份:2023
- 资助金额:
$ 73.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on the role of brown adipose tissue in the development and maintenance of skeletal muscles
棕色脂肪组织在骨骼肌发育和维持中作用的研究
- 批准号:
23K19922 - 财政年份:2023
- 资助金额:
$ 73.09万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Adipose Tissue T Cell Polarization and Metabolic Health in Persons Living with HIV
HIV 感染者的脂肪组织 T 细胞极化和代谢健康
- 批准号:
10619176 - 财政年份:2023
- 资助金额:
$ 73.09万 - 项目类别:
Estrogen Signaling in the Ventromedial Hypothalamus Modulates Adipose Tissue Metabolic Adaptation
下丘脑腹内侧区的雌激素信号调节脂肪组织代谢适应
- 批准号:
10604611 - 财政年份:2023
- 资助金额:
$ 73.09万 - 项目类别:
Obesity and Childhood Asthma: The Role of Adipose Tissue
肥胖和儿童哮喘:脂肪组织的作用
- 批准号:
10813753 - 财政年份:2023
- 资助金额:
$ 73.09万 - 项目类别: