Multiscale hydrogel biomaterials-enabled 3D modeling of cancer drug resistance
基于多尺度水凝胶生物材料的癌症耐药性 3D 建模
基本信息
- 批准号:10639167
- 负责人:
- 金额:$ 44.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccelerationAmericanAnimal Cancer ModelAnimal ModelAntineoplastic AgentsBiocompatible MaterialsBlood VesselsBone MarrowBone Marrow Stem CellBreast Cancer CellBreast Cancer PatientCancer EtiologyCancer PatientCardiacCause of DeathCell Culture TechniquesCell LineCell SeparationCell SurvivalCell modelCellsCellular SpheroidsCessation of lifeChemotherapy-Oncologic ProcedureChondrocytesCollagenCollecting CellComplexDataDevicesDrug ModelingsDrug resistanceEmbryoEncapsulatedEndothelial CellsEndotheliumEngineeringEpidermal Growth Factor ReceptorFailureFatty acid glycerol estersFoundationsFrequenciesGene ExpressionHistologyHomeHumanHuman bodyHydrogelsIn VitroIndividualLabelMDA MB 231Malignant NeoplasmsMammary NeoplasmsMethodsMicrocapsules drug delivery systemMicrofluidicsModelingMusNatureNeoplasm MetastasisNeoplasms in Vascular TissueNutrientOrganoidsOsteoblastsOxygenPatientsPerfusionPermeabilityPlayPluripotent Stem CellsProliferatingPropertyProstatic NeoplasmsPublic HealthRecurrent Malignant NeoplasmReportingRoleStromal CellsStudy modelsSurfaceSuspension CultureTechnologyTestingTimeTissuesTotipotentTumor Stem CellsUmbilical veinVascularizationWomanadipose derived stem cellcancer cellcancer cell differentiationcancer drug resistancecancer recurrencecancer stem cellcancer subtypescarcinogenesiscell motilitycell typecombatcostdrug discoveryendothelial stem cellengineered stem cellshatchinghuman stem cellsin vivoinnovationmalignant breast neoplasmmortalitynanolitreneoplastic cellneuralnovelnovel anticancer drugosteogenicovarian neoplasmprotein expressionrare cancerscaffoldstem cellstargeted treatmentthree dimensional cell culturethree-dimensional modelingtriple-negative invasive breast carcinomatumortumorigenesistumorigenic
项目摘要
Project Summary/Abstract
Developing new anticancer drugs has been very slow and costly. A major reason is that the commonly used
2D cancer cells and animal models for drug discovery today are very different from the 3D tumors in human
patients. Lately, 3D tumor models have been made by suspending tumor cells in medium to form multicellular
spheroids/organoids, growing the cells in hydrogels/scaffolds, and incorporating blood vessels. However, little
has been done to build 3D vascularized tumor models for recapitulating the drug resistance in patient tumors.
We recently developed a novel multiscale hydrogel biomaterials-based bottom-up strategy to control the
formation of the two distinct tissue domains in tumors - a 3D vascular network and an avascular/intervascular
tumor cell-containing region, for studying cancer drug resistance. This is achieved by producing 3D avascular
micro-tumors (µtumors) first and using them as the building blocks for assembling with endothelial cells (ECs)
under dynamic perfusion culture, to form 3D vascularized tumors with a complex 3D vascular network that
mimics the vascular-intervascular organization of in vivo tumors. Importantly, our data show quantitatively for
the first time that, the 3D vascularized tumors are much more drug resistant than 3D avascular µtumors,
indicating tumor blood vessels not only transport nutrients/oxygen but also enhance cancer drug resistance.
However, no 3D vascularized tumor was built in vitro with cells differentiated from cancer stem cells (CSCs)
for drug discovery, although the rare CSCs have been posited to possess the exclusive ability of tumorigenesis
and be responsible for the many failures of cancer chemotherapy due to their high drug resistance. Moreover,
no CSCs isolated with contemporary methods are shown to differentiate into a type of cells that are not in
tumors. This cross-tissue multilineage differentiation is a key property of stem cells (e.g., adipose-derived stem
cells can differentiate into osteoblasts that are absent in fat). Thus, a method for isolating true CSCs is in need.
We recently developed a novel core-shell hydrogel biomaterials-based approach for isolating CSCs by
culturing one (1) single cancer cell (from a cell line) in the nanoliter hydrogel core of microcapsules that mimic
pre-hatching embryos, where totipotent-pluripotent stem cells are cultured in human body. Importantly, the
isolated CSCs are capable of endothelial, cardiac, neural, and osteogenic differentiations and highly tumorigenic,
metastatic, and drug resistant, indicating the cells isolated with our bioinspired 1-cell culture are truly CSCs.
In this project, we propose to further develop the novel bioinspired approach for isolating CSCs from breast
tumors of human patients. In view of the highly drug resistant nature of the CSCs isolated with our bioinspired
1-cell culture and their ability of differentiating into ECs in vivo that may reduce patient survival, we further
propose to use the CSC-derived ECs and cancer cells for building 3D vascularized tumors, to better model the
drug resistance in patient tumors than existing 3D vascularized tumors made using non-CSC cancer cells and
non-CSC (and often non-cancer-related) ECs (e.g., human umbilical vein endothelial cells known as HUVECs).
项目总结/摘要
开发新的抗癌药物一直非常缓慢和昂贵。一个主要原因是,
今天用于药物发现的2D癌细胞和动物模型与人类的3D肿瘤非常不同
患者最近,已经通过将肿瘤细胞悬浮在培养基中以形成多细胞的3D肿瘤模型
在一些实施方案中,细胞可以在类球体/类器官中生长,在水凝胶/支架中生长细胞,以及并入血管。不过小
已经完成了建立3D血管化肿瘤模型,用于重现患者肿瘤中的耐药性。
我们最近开发了一种新的多尺度水凝胶生物材料为基础的自下而上的战略,以控制
肿瘤中两种不同组织域的形成-3D血管网络和无血管/血管间
含肿瘤细胞区域,用于研究癌症耐药性。这是通过产生3D无血管
首先是微肿瘤(µtumors),并将其用作与内皮细胞(EC)组装的构建块
在动态灌注培养下,形成具有复杂3D血管网络的3D血管化肿瘤,
模拟体内肿瘤的血管间组织。重要的是,我们的数据定量显示,
这是第一次,3D血管化肿瘤比3D无血管肿瘤更具抗药性,
表明肿瘤血管不仅运输营养/氧气,而且增强癌症耐药性。
然而,没有3D血管化肿瘤是用从癌症干细胞(CSC)分化的细胞在体外建立的。
尽管罕见的CSC被认为具有肿瘤发生的独特能力,
并且由于它们的高耐药性而导致癌症化疗的许多失败。此外,委员会认为,
用现代方法分离的CSC没有显示出分化成不参与细胞分化的细胞类型。
肿瘤的这种跨组织多谱系分化是干细胞的一个关键特性(例如,脂肪干
细胞可以分化成脂肪中不存在的成骨细胞)。因此,需要一种用于分离真CSC的方法。
我们最近开发了一种新的基于核-壳水凝胶生物材料的方法,用于分离CSCs,
在微胶囊的纳升水凝胶核中培养一个(1)单个癌细胞(来自细胞系),
孵化前胚胎,其中全能-多能干细胞在人体内培养。重要的是
分离的CSC能够内皮、心脏、神经和成骨分化,并且高度致瘤,
转移性和耐药性,表明用我们的生物启发的1-细胞培养物分离的细胞是真正的CSC。
在这个项目中,我们建议进一步开发新的生物启发的方法,从乳腺中分离CSCs,
人类患者的肿瘤。鉴于用我们的生物启发分离的CSC的高度耐药性质,
1-细胞培养及其在体内分化为EC的能力可能会降低患者的存活率,我们进一步
我建议使用CSC衍生的EC和癌细胞来构建3D血管化肿瘤,以更好地模拟肿瘤细胞。
患者肿瘤中的耐药性优于使用非CSC癌细胞制备的现有3D血管化肿瘤,
非CSC(并且通常是非癌症相关的)EC(例如,人脐静脉内皮细胞,称为HUVEC)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoming He其他文献
Xiaoming He的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaoming He', 18)}}的其他基金
Nanotechnology for targeted therapy and fundamental understanding oftherapeutic resistance in triple negative breast cancer
用于靶向治疗的纳米技术和对三阴性乳腺癌治疗耐药性的基本了解
- 批准号:
10593921 - 财政年份:2020
- 资助金额:
$ 44.03万 - 项目类别:
Nanotechnology for targeted therapy and fundamental understanding oftherapeutic resistance in triple negative breast cancer
用于靶向治疗的纳米技术和对三阴性乳腺癌治疗耐药性的基本了解
- 批准号:
10376777 - 财政年份:2020
- 资助金额:
$ 44.03万 - 项目类别:
Nanotechnology enabled targeting of p53 deficiency in human cancer
纳米技术能够靶向人类癌症中的 p53 缺陷
- 批准号:
10063652 - 财政年份:2018
- 资助金额:
$ 44.03万 - 项目类别:
Investigate the mechanisms underlying microRNA-146a activity in regulation of foreign body response to biomaterials
研究 microRNA-146a 活性调节生物材料异物反应的机制
- 批准号:
10522163 - 财政年份:2017
- 资助金额:
$ 44.03万 - 项目类别:
Investigate the mechanisms underlying microRNA-146a activity in regulation of foreign body response to biomaterials
研究 microRNA-146a 活性调节生物材料异物反应的机制
- 批准号:
10641032 - 财政年份:2017
- 资助金额:
$ 44.03万 - 项目类别:
Nanotechnology enabled targeting of p53 deficiency in human cancer
纳米技术能够靶向人类癌症中的 p53 缺陷
- 批准号:
9307738 - 财政年份:2016
- 资助金额:
$ 44.03万 - 项目类别:
Nanotechnology enabled targeting of p53 deficiency in human cancer
纳米技术能够靶向人类癌症中的 p53 缺陷
- 批准号:
9193391 - 财政年份:2016
- 资助金额:
$ 44.03万 - 项目类别:
Microencapsulation of oocytes for low-CPA (cryoprotectant) vitrification
用于低 CPA(冷冻保护剂)玻璃化冷冻的卵母细胞微囊化
- 批准号:
8050447 - 财政年份:2011
- 资助金额:
$ 44.03万 - 项目类别:
Microencapsulation of oocytes for low-CPA (cryoprotectant) vitrification
用于低 CPA(冷冻保护剂)玻璃化冷冻的卵母细胞微囊化
- 批准号:
8325224 - 财政年份:2011
- 资助金额:
$ 44.03万 - 项目类别:
Microencapsulation of oocytes for low-CPA (cryoprotectant) vitrification
用于低 CPA(冷冻保护剂)玻璃化冷冻的卵母细胞微囊化
- 批准号:
8600270 - 财政年份:2011
- 资助金额:
$ 44.03万 - 项目类别:
相似海外基金
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 44.03万 - 项目类别:
Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 44.03万 - 项目类别:
Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 44.03万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 44.03万 - 项目类别:
Continuing Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 44.03万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 44.03万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 44.03万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 44.03万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 44.03万 - 项目类别:
Continuing Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
- 批准号:
23H01186 - 财政年份:2023
- 资助金额:
$ 44.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)