High Resolution Microwave Tomographic Imaging of Brain Strokes Using Low-Frequency Measurements and Deep Neural Networks
使用低频测量和深度神经网络对脑中风进行高分辨率微波断层成像
基本信息
- 批准号:10641852
- 负责人:
- 金额:$ 7.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAffectAlgorithmsAmbulancesAnatomyAreaBiologicalBrainBrain hemorrhageBrain imagingBreast Cancer DetectionCalibrationClinicalDataData SetDetectionDevelopmentDiagnosisDimensionsEarly treatmentElectromagnetic EnergyElectromagneticsEvaluationEvolutionFrequenciesFutureGoalsHeadHealthHemorrhageHospitalsHourHumanImageIonizing radiationIschemiaIschemic StrokeKnowledgeMagnetic Resonance ImagingMarketingMeasurementMeasuresMethodsModelingMonitorMuslim religionNeurologyNeuronsNoiseOutputPre-hospital settingProcessResearchResolutionRestRiskSafetySiteStrokeStudy SubjectSurvivorsSymptomsSystemTechniquesTestingTissue ModelTissuesTrainingUnited StatesVariantX-Ray Computed Tomographyalgorithm trainingassessment applicationattenuationdeep neural networkdesigndielectric propertydiffuse optical tomographyexpectationhuman old age (65+)human subjectimage reconstructionimaging modalityimaging systemimprovedimproved outcomeinnovationloss of functionmicrowave electromagnetic radiationmortalityneuroimagingnovelreconstructiontomographyusabilityvirtual
项目摘要
PROJECT SUMMARY / ABSTRACT
According to the CDC, a stroke occurs in the United States every 40 seconds, with a fatality every 4 minutes
and associated reduction in mobility in more than half of survivors of ages 65 and over. The ability to
differentiate ischemic/hemorrhagic strokes in the pre-hospital setting and to monitor stroke evolution by the
bedside has the great potential to improve outcomes and reduce mortality. Unfortunately, state-of-the-practice
MRI and CT systems are bulky and pricy, restricting imaging to the clinical setting and sparse intervals. CT
also uses ionizing radiation that poses safety risks and further prohibits frequent imaging. Microwave
Tomographic Imaging (MTI) is a promising alternative/complementary option to MRI and CT, but has yet to be
used in the clinical setting. This is mainly due to its poor spatial resolution as feature dimensions are
comparable to the wavelength of the electromagnetic wave. Unfortunately, reducing the wavelength (i.e.,
increasing the measurement frequency) of MTI is not viable as high frequencies are prone to noise and severe
attenuation inside tissues. Instead, our goal is to explore the feasibility of expanding the fundamental limits of
MTI resolution via innovations in estimating high-frequency data from low-frequency measurements using
Deep Neural Networks (DNNs). We target detection of strokes <1cm×1cm that meets clinical expectations for
a much needed addition to the pre-hospital setting and throughout the stroke monitoring process. Hypothesis
1: A relationship exists between the low- and high-frequency data measured around a biological imaging
domain that we can use to ‘artificially’ increase the highest usable frequency for any given low-frequency
measurements. Hypothesis 2: An ‘artificial’ increase in frequency by N times will improve image resolution by N
times, regardless of the MTI reconstruction method used. Here, N depends on the highest usable frequency (to
be determined) and is expected to be at least equal to two. The study is significant because it reveals
previously unknown knowledge for enhancing MTI resolution in biological media. In Aim 1, we will develop the
DNN using 2D/3D solvers, canonical/anatomical head models, and a new class of into-body radiating antennas
with unprecedented efficiency. Our study will validate Hypothesis 1. In Aim 2, we will validate the DNN
numerically by using the estimated high-frequency data to reconstruct the image. Our study will validate
Hypothesis 2. In Aim 3, we will validate the DNN experimentally using tissue-emulating phantoms. Successful
reconstruction will entail improved (N times higher) image resolution vs. state-of-the-art MTI reconstruction at
the same measurement frequency. A comparison of image reconstruction accuracy using actual vs. estimated
high-frequency data will further reveal the method’s efficacy. Feasibility will form the basis of future studies on
human subjects. We envision this technique to be a much needed breakthrough to overcoming the upper
frequency limit of MTI algorithms for various diagnosis and/or pre-hospital assessment applications in brain
stoke applications and beyond.
项目摘要/摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Asimina Kiourti其他文献
Asimina Kiourti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Asimina Kiourti', 18)}}的其他基金
High Resolution Microwave Tomographic Imaging of Brain Strokes Using Low-Frequency Measurements and Deep Neural Networks
使用低频测量和深度神经网络对脑中风进行高分辨率微波断层成像
- 批准号:
10429133 - 财政年份:2022
- 资助金额:
$ 7.88万 - 项目类别:
Non-Invasive Wideband Radiometer for Accurate Core Temperature Monitoring
用于精确监测核心温度的非侵入式宽带辐射计
- 批准号:
10194492 - 财政年份:2020
- 资助金额:
$ 7.88万 - 项目类别:
Non-Invasive Wideband Radiometer for Accurate Core Temperature Monitoring
用于精确监测核心温度的非侵入式宽带辐射计
- 批准号:
10039648 - 财政年份:2020
- 资助金额:
$ 7.88万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 7.88万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 7.88万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 7.88万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 7.88万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 7.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 7.88万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 7.88万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 7.88万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 7.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 7.88万 - 项目类别:
Studentship