Contextualized daily prediction of lapse risk in opioid use disorder by digital phenotyping
通过数字表型分析对阿片类药物使用障碍的失效风险进行情境化每日预测
基本信息
- 批准号:10642766
- 负责人:
- 金额:$ 68.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AbstinenceAcousticsAdvertisingAffectAlcoholsBehaviorCaringCellular PhoneCharacteristicsClinicalCommunicationCommunitiesData SourcesDiagnosisDistalDrug CombinationsDrug usageEcological momentary assessmentEquilibriumFaceFacebookFamilyFoundationsFrequenciesFriendsGenderGoalsHealthHomeIndividualIntakeLocationMeasuresMedicalMental disordersMethodsMobile Health ApplicationModelingMonitorNarcotics AnonymousNatural Language ProcessingOpioidPaperParticipantPatient RecruitmentsPatient Self-ReportPatientsPatternPersonsPharmaceutical PreparationsPhenotypePhysical activityPositioning AttributePredictive AnalyticsProbabilityPsychopathologyPublishingRaceRecoveryRecovery SupportRelapseRiskRisk FactorsSamplingServicesSeveritiesSignal TransductionSocial EnvironmentSocial NetworkStimulantSubstance Use DisorderSupport SystemSurveysSystemTelephoneTestingText MessagingTheoretical modelTimeTrainingVisualVoiceaddictionalcohol testingalcohol use disordercare providerscare systemschronic painclinical carecomorbiditycostcravingdigitaldrug abstinenceexperienceinformation gatheringinnovationmHealthmachine learning methodmeetingsmicrophonemobile applicationopioid useopioid use disorderoverdose deathparticipant enrollmentpeerpersonalized carepredictive modelingprolonged abstinencereal time modelrecruitrelapse preventionrelapse riskrisk predictionrisk prediction modelrural settingsensorsignal processingskillssleep qualitysobrietysocial mediastressorsuburbsustained recovery
项目摘要
PROJECT SUMMARY
Opioid use disorder is increasingly widespread, leading to devastating consequences and costs for patients and their
families, friends, and communities. Available treatments for opioid and other substance use disorders (SUD) are not
successful at sustaining sobriety. The vast majority of people with SUD relapse within a year. Critically, they often fail to
detect dynamic, day-by-day changes in their risk for relapse and do not adequately employ skills they developed or take advantage of support available through continuing care. The broad goals of this project are to develop and deliver a highly contextualized, lapse risk prediction models for forecasting day-by-day probability of opioid and other drug use lapse among people pursuing drug abstinence. This lapse risk prediction model will be delivered within the Addiction-Comprehensive Health Enhancement Support System (A-CHESS) mobile app, which has been established by RCT as a state-of-the-art mHealth system for providing continuing care services for alcohol and substance use disorders.
To accomplish these broad goals, a diverse sample of 480 participants with opioid use disorder who are pursing
abstinence will be recruited. These participants will be followed for 12 months of their recovery, with observations
occurring as early as one week post-abstinence and as late as 18 months post-abstinence across participants in the
sample. Well-established distal, static relapse risk signals (e.g., addiction severity, comorbid psychopathology) will be
measured on intake. A range of more proximal, time-varying opioid (and other drug use) lapse risk signals will also be
collected via participants’ smartphones. These signals include self-report surveys every two months, daily ecological
momentary assessments, daily video recovery “check-ins”, voice phone call and text message logs, text message
content, moment-by-moment location (via smartphone GPS and location services), physical activity (via smartphone
sensors), and usage of the mobile A-CHESS Recovery Support app. The predictive power of these risk signals will be
further increased by anchoring them within an inter-personal context of known people, locations, dates, and times that
support or detract from participants’ abstinence efforts. Machine learning methods will be used to train, validate, and test opioid (and other drug) lapse risk prediction models based on these contextualized static and dynamic risk signals.
These lapse risk prediction models will provide participant specific, day-by-day probabilistic forecast of a lapse to opioid (or other drug) use among opioid abstinent individuals. These lapse risk prediction models will be formally added to the A-CHESS continuing care mobile app at the completion of the project for use in clinical care. These project goals position A-CHESS to make relapse prevention and recovery support, information, and risk monitoring available to patients continuously. Compared to conventional continuing care, A-CHESS will provide personalized care and be available and implemented during moments of greatest need. Integrated real-time risk prediction holds substantial promise to encourage sustained recovery through adaptive use of these continuing care services.
项目概要
阿片类药物使用障碍日益普遍,给患者及其家属带来毁灭性的后果和成本
家人、朋友和社区。阿片类药物和其他物质使用障碍 (SUD) 的可用治疗方法尚未
成功地保持清醒。绝大多数 SUD 患者会在一年内复发。关键的是,他们常常无法
检测到复发风险的动态、日常变化,并且没有充分利用他们开发的技能或利用通过持续护理提供的支持。该项目的总体目标是开发和提供高度情境化的戒断风险预测模型,用于预测戒毒人群中阿片类药物和其他药物戒断的日常概率。这种失误风险预测模型将在成瘾综合健康增强支持系统 (A-CHESS) 移动应用程序中提供,该应用程序由 RCT 建立,作为最先进的移动医疗系统,为酒精和药物滥用障碍提供持续护理服务。
为了实现这些广泛的目标,我们对 480 名患有阿片类药物使用障碍的参与者进行了多样化抽样调查,他们正在寻求
禁欲者将被招募。这些参与者将接受为期 12 个月的康复跟踪,并进行观察
参与者最早在禁欲后 1 周、最晚在禁欲后 18 个月发生
样本。明确的远端、静态复发风险信号(例如,成瘾严重程度、共病精神病理学)将被
根据摄入量进行测量。一系列更近端的、随时间变化的阿片类药物(和其他药物使用)失效风险信号也将被
通过参与者的智能手机收集。这些信号包括每两个月进行一次自我报告调查、每日生态
即时评估、每日视频恢复“签到”、语音电话和短信日志、短信
内容、即时位置(通过智能手机 GPS 和定位服务)、身体活动(通过智能手机
传感器),以及移动 A-CHESS 恢复支持应用程序的使用。这些风险信号的预测能力将是
通过将它们锚定在已知的人、地点、日期和时间的人际背景中,进一步增加
支持或削弱参与者的禁欲努力。机器学习方法将用于基于这些情境化的静态和动态风险信号来训练、验证和测试阿片类药物(和其他药物)失效风险预测模型。
这些失效风险预测模型将为参与者提供阿片类药物戒断个体中阿片类药物(或其他药物)使用失效的每日概率预测。这些失效风险预测模型将在项目完成后正式添加到 A-CHESS 持续护理移动应用程序中,用于临床护理。这些项目目标使 A-CHESS 能够持续为患者提供复发预防和康复支持、信息和风险监控。与传统的持续护理相比,A-CHESS 将提供个性化护理,并在最需要的时刻提供和实施。综合实时风险预测有望通过适应性使用这些持续护理服务来鼓励持续康复。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Graph-based representation for identifying individual travel activities with spatiotemporal trajectories and POI data.
- DOI:10.1038/s41598-022-19441-9
- 发表时间:2022-09-21
- 期刊:
- 影响因子:4.6
- 作者:Liu, Xinyi;Wu, Meiliu;Peng, Bo;Huang, Qunying
- 通讯作者:Huang, Qunying
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John J. Curtin其他文献
Role of specific cytotoxic lymphocytes in cellular immunity against murine cytomegalovirus
特异性细胞毒性淋巴细胞在针对鼠巨细胞病毒的细胞免疫中的作用
- DOI:
- 发表时间:
1980 - 期刊:
- 影响因子:3.1
- 作者:
HO Monto;John J. Curtin - 通讯作者:
John J. Curtin
586. Performance and Equity of Geolocation Data for Lapse Prediction in Alcohol Use Disorder
用于酒精使用障碍失误预测的地理定位数据的性能和公平性
- DOI:
10.1016/j.biopsych.2025.02.825 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:9.000
- 作者:
Claire Punturieri;Susan E. Wanta;John J. Curtin - 通讯作者:
John J. Curtin
John J. Curtin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John J. Curtin', 18)}}的其他基金
Contextualized daily prediction of lapse risk in opioid use disorder by digital phenotyping
通过数字表型分析对阿片类药物使用障碍的失效风险进行情境化每日预测
- 批准号:
10427354 - 财政年份:2019
- 资助金额:
$ 68.56万 - 项目类别:
Contextualized daily prediction of lapse risk in opioid use disorder by digital phenotyping
通过数字表型分析对阿片类药物使用障碍的失效风险进行情境化每日预测
- 批准号:
10172881 - 财政年份:2019
- 资助金额:
$ 68.56万 - 项目类别:
Contextualized daily prediction of lapse risk in opioid use disorder by digital phenotyping
通过数字表型分析对阿片类药物使用障碍的失效风险进行情境化每日预测
- 批准号:
9980350 - 财政年份:2019
- 资助金额:
$ 68.56万 - 项目类别:
RCT targeting noradrenergic stress mechanisms in alcoholism with doxazosin
多沙唑嗪针对酒精中毒中去甲肾上腺素能应激机制的随机对照试验
- 批准号:
9134571 - 财政年份:2015
- 资助金额:
$ 68.56万 - 项目类别:
Dynamic, real-time prediction of alcohol use lapse using mHealth technologies
使用移动医疗技术动态、实时预测酒精滥用情况
- 批准号:
9275293 - 财政年份:2015
- 资助金额:
$ 68.56万 - 项目类别:
RCT targeting noradrenergic stress mechanisms in alcoholism with doxazosin
多沙唑嗪针对酒精中毒中去甲肾上腺素能应激机制的随机对照试验
- 批准号:
8986543 - 财政年份:2015
- 资助金额:
$ 68.56万 - 项目类别:
Dynamic, real-time prediction of alcohol use lapse using mHealth technologies
使用移动医疗技术动态、实时预测饮酒失误
- 批准号:
8986398 - 财政年份:2015
- 资助金额:
$ 68.56万 - 项目类别:
RCT targeting noradrenergic stress mechanisms in alcoholism with doxazosin
多沙唑嗪针对酒精中毒中去甲肾上腺素能应激机制的随机对照试验
- 批准号:
9327840 - 财政年份:2015
- 资助金额:
$ 68.56万 - 项目类别:
Clinical Relevance of Stress Neuroadaptation in Tobacco Dependence
压力神经适应与烟草依赖的临床相关性
- 批准号:
8685929 - 财政年份:2012
- 资助金额:
$ 68.56万 - 项目类别:
Clinical Relevance of Stress Neuroadaptation in Tobacco Dependence
压力神经适应与烟草依赖的临床相关性
- 批准号:
8507199 - 财政年份:2012
- 资助金额:
$ 68.56万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 68.56万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 68.56万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 68.56万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 68.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 68.56万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 68.56万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 68.56万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 68.56万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 68.56万 - 项目类别:
Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 68.56万 - 项目类别:
Standard Grant














{{item.name}}会员




