Dynamic, real-time prediction of alcohol use lapse using mHealth technologies
使用移动医疗技术动态、实时预测饮酒失误
基本信息
- 批准号:8986398
- 负责人:
- 金额:$ 38.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-10 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:AbstinenceAddressAffectAlcohol consumptionBehaviorBiometryCaringCellular PhoneCharacteristicsCommunitiesCompetenceDataDecision ModelingDependenceDistalDrug Use DisorderDrug usageFoundationsFrequenciesGalvanic Skin ResponseGoalsHealthHealth ServicesHeart RateIntakeInterventionLocationMachine LearningMeasuresMedical centerMethodsModelingMonitorMotivationNonlinear DynamicsParticipantPatient Self-ReportPatientsPatternPharmacological TreatmentPhysiologyPositioning AttributeProbabilityProcessProviderPsychopathologyRecoveryRelapseRelative (related person)ReportingResearchRiskRisk FactorsSamplingServicesSeveritiesSignal TransductionSleepSupport SystemTechnologyTextTheoretical modelTimeTrainingTreatment EfficacyUnited States Department of Veterans AffairsValidationVoiceWithdrawaladdictionalcohol and other drugalcohol use disorderbaseclinical applicationcopingcostcravingdisorder later incidence preventionexperienceinnovationmHealthmodel developmentpersonalized carepredictive modelingpreventproblem drinkerprogramspsychosocialpublic health relevancereal time modelresponsesensorskillsstandard of carestressor
项目摘要
DESCRIPTION (provided by applicant): Available psychosocial and pharmacological treatments for alcohol use disorder are effective at establishing abstinence. However, the vast majority of patients relapse within a year and often within the first few months following treatment. Patients often fail to detect dynamic changes in their relapse risk. Furthermore, the majority of patients fail to adequately sustain use of skills developed during treatment and/or through continuing care. Well-established theoretical models indicate that alcohol and other drug use lapse risk is a dynamic, non-linear function of both distal, relatively static, patient characteristics and often moment-by- moment dynamic changes in proximal, precipitating risk factors. However, comprehensive, precise assessment of dynamic risk indicators in real-time has not been possible until very recently. Furthermore, innovative methods from predictive analytics have not been applied to the lapse risk prediction problem. The broad goals of this project are to develop, validate, preliminarily optimize, and deliver a dynamic, real-time lapse risk prediction model for forecasting alcohol use among abstinent alcoholics. To pursue these goals, we propose to follow 200 patients for three months during or following completion of standard of care treatment for alcohol use disorder. We will measure well-established distal, static relapse risk indicators on study intake. More importantly, we will use innovative mHealth technology to densely sample dynamic risk indicators including patient physiology, subjective experience, and behavior daily for three months using smartphones and wearable biometric sensors. Data obtained for these static and dynamic risk indicators will provide the foundation to accomplish the following Specific Aims: 1. Assess burden (feasibility, cost, and patient acceptability) to collect innovative, densely sampled risk indicators via smartphone and wearable sensors. 2. Use machine learning methods to develop, train, and validate a real-time quantitative lapse risk prediction signal based on static and dynamic risk indicators. 3. Use innovative Markov decision process models to optimize decisions about if, when, and how to provide additional treatment or support. 4. Integrate and deliver risk prediction and decision model within the Comprehensive Health Enhancement Support System for Addiction (A-CHESS) program. These project aims position A-CHESS to make relapse prevention and recovery support, information, and risk monitoring available to patients continuously. Compared to conventional continuing care, A-CHESS will provide personalized care and be available and implemented during moments of greatest need. Integrated real-time risk prediction holds substantial promise to encourage sustained recovery through adaptive use of these continuing care services.
描述(由申请人提供):现有的酒精使用障碍的心理社会和药物治疗在建立戒酒方面是有效的。然而,绝大多数患者在一年内复发,通常在治疗后的头几个月内复发。患者往往无法发现其复发风险的动态变化。此外,大多数患者未能充分持续使用在治疗期间和/或通过持续护理培养的技能。成熟的理论模型表明,酒精和其他药物使用失效风险是一个动态的,非线性函数的远端,相对静态的,病人的特点和经常时刻的动态变化,近端,沉淀的风险因素。然而,直到最近才能对动态风险指标进行全面、精确的实时评估。此外,预测分析的创新方法尚未应用于失效风险预测问题。该项目的主要目标是开发,验证,初步优化和提供一个动态的,实时的风险预测模型,用于预测戒酒者的酒精使用。为了实现这些目标,我们建议在酒精使用障碍标准治疗期间或完成后对200名患者进行为期三个月的随访。我们将在研究摄入时测量完善的远端静态复发风险指标。更重要的是,我们将使用创新的mHealth技术,使用智能手机和可穿戴生物识别传感器,每天对动态风险指标进行密集采样,包括患者生理、主观体验和行为,为期三个月。这些静态和动态风险指标所获得的数据将为实现以下具体目标提供基础:1.评估负担(可行性,成本和患者可接受性),通过智能手机和可穿戴传感器收集创新的,密集采样的风险指标。2.使用机器学习方法开发、训练和验证基于静态和动态风险指标的实时定量失效风险预测信号。3.使用创新的马尔可夫决策过程模型来优化是否、何时以及如何提供额外治疗或支持的决策。4.在成瘾综合健康增强支持系统(A-CHESS)计划中集成和提供风险预测和决策模型。这些项目旨在定位A-CHESS,使复发预防和恢复支持,信息和风险监测持续提供给患者。与传统的持续护理相比,A-CHESS将提供个性化的护理,并在最需要的时候提供和实施。综合的实时风险预测具有很大的希望,通过适应性地使用这些持续护理服务来鼓励持续康复。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John J. Curtin其他文献
Role of specific cytotoxic lymphocytes in cellular immunity against murine cytomegalovirus
特异性细胞毒性淋巴细胞在针对鼠巨细胞病毒的细胞免疫中的作用
- DOI:
- 发表时间:
1980 - 期刊:
- 影响因子:3.1
- 作者:
HO Monto;John J. Curtin - 通讯作者:
John J. Curtin
586. Performance and Equity of Geolocation Data for Lapse Prediction in Alcohol Use Disorder
用于酒精使用障碍失误预测的地理定位数据的性能和公平性
- DOI:
10.1016/j.biopsych.2025.02.825 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:9.000
- 作者:
Claire Punturieri;Susan E. Wanta;John J. Curtin - 通讯作者:
John J. Curtin
John J. Curtin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John J. Curtin', 18)}}的其他基金
Contextualized daily prediction of lapse risk in opioid use disorder by digital phenotyping
通过数字表型分析对阿片类药物使用障碍的失效风险进行情境化每日预测
- 批准号:
10427354 - 财政年份:2019
- 资助金额:
$ 38.18万 - 项目类别:
Contextualized daily prediction of lapse risk in opioid use disorder by digital phenotyping
通过数字表型分析对阿片类药物使用障碍的失效风险进行情境化每日预测
- 批准号:
10172881 - 财政年份:2019
- 资助金额:
$ 38.18万 - 项目类别:
Contextualized daily prediction of lapse risk in opioid use disorder by digital phenotyping
通过数字表型分析对阿片类药物使用障碍的失效风险进行情境化每日预测
- 批准号:
9980350 - 财政年份:2019
- 资助金额:
$ 38.18万 - 项目类别:
Contextualized daily prediction of lapse risk in opioid use disorder by digital phenotyping
通过数字表型分析对阿片类药物使用障碍的失效风险进行情境化每日预测
- 批准号:
10642766 - 财政年份:2019
- 资助金额:
$ 38.18万 - 项目类别:
RCT targeting noradrenergic stress mechanisms in alcoholism with doxazosin
多沙唑嗪针对酒精中毒中去甲肾上腺素能应激机制的随机对照试验
- 批准号:
9134571 - 财政年份:2015
- 资助金额:
$ 38.18万 - 项目类别:
Dynamic, real-time prediction of alcohol use lapse using mHealth technologies
使用移动医疗技术动态、实时预测酒精滥用情况
- 批准号:
9275293 - 财政年份:2015
- 资助金额:
$ 38.18万 - 项目类别:
RCT targeting noradrenergic stress mechanisms in alcoholism with doxazosin
多沙唑嗪针对酒精中毒中去甲肾上腺素能应激机制的随机对照试验
- 批准号:
8986543 - 财政年份:2015
- 资助金额:
$ 38.18万 - 项目类别:
RCT targeting noradrenergic stress mechanisms in alcoholism with doxazosin
多沙唑嗪针对酒精中毒中去甲肾上腺素能应激机制的随机对照试验
- 批准号:
9327840 - 财政年份:2015
- 资助金额:
$ 38.18万 - 项目类别:
Clinical Relevance of Stress Neuroadaptation in Tobacco Dependence
压力神经适应与烟草依赖的临床相关性
- 批准号:
8685929 - 财政年份:2012
- 资助金额:
$ 38.18万 - 项目类别:
Clinical Relevance of Stress Neuroadaptation in Tobacco Dependence
压力神经适应与烟草依赖的临床相关性
- 批准号:
8507199 - 财政年份:2012
- 资助金额:
$ 38.18万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 38.18万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 38.18万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 38.18万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 38.18万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 38.18万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 38.18万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 38.18万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 38.18万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 38.18万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 38.18万 - 项目类别:
Research Grant














{{item.name}}会员




