Detecting and classifying non-fluent speech in aphasia using machine learning
使用机器学习对失语症患者的不流利言语进行检测和分类
基本信息
- 批准号:10647054
- 负责人:
- 金额:$ 0.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至
- 项目状态:未结题
- 来源:
- 关键词:AcousticsAffectAmericanAphasiaArticulationClinicalCodeCognitiveCommunicationDatabasesDiagnosticFeelingFunctional disorderFutureGoalsImpaired cognitionImpairmentIndividualInterventionLanguageLifeLightLinear RegressionsLinguisticsLong-Term EffectsMachine LearningMeasuresMental DepressionModelingMonitorMotorOutputPatientsPersonsPopulationPredictive ValueProxyResearchSamplingSchemeSocial isolationSourceSpeechStandardizationSurfaceTechniquesTestingTimeTrainingValidationWorkaccurate diagnosiscognitive functioncohortdisabilityexperiencefunctional outcomesindexinginter-individual variationinterestlanguage impairmentlexical retrievalmachine learning classifiernovelnovel diagnosticsnovel strategiespost strokepredictive modelingprospectiverecruitsocialstroke-induced aphasiasupervised learningsyntaxtreatment planningtreatment response
项目摘要
PROJECT SUMMARY
Among the approximately 2 million Americans living with post-stroke aphasia, many experience difficulties with
verbal expression that render everyday communication effortful, inefficient, and stressful.1,32 For persons with
aphasia (PWA), speech non-fluency is often experienced as a visible disability with significant social
consequences.36,37 Given this functional salience, speech fluency is an important construct to assess, monitor,
and treat. It is, however, a longstanding clinical challenge to index fluency in a way that is comprehensive,
interpretable, and efficient,7 and current approaches rely on either expert clinician ratings or time-intensive
linguistic analyses using detailed coding. Temporal acoustic measures, by contrast, are objective measures
that can be automatically or semi-automatically derived from connected speech. Prior research has
demonstrated that the rate and rhythm of speech output reflect underlying impairments in both speech and
language (e.g., motor speech, lexical retrieval), suggesting the utility of temporal acoustic measures to index
non-fluency in PWA. The goal of the current study is to investigate the feasibility of using automated temporal
acoustic features to identify non-fluent aphasia and to better understand the latent speech, language, and
cognitive constructs underlying these surface speech features. To achieve this goal, we leverage machine
learning techniques as part of a predictive modeling approach to identify speech features whose clinical utility
can be generalized to inform future assessment of fluency in aphasia. In Aim 1, we will investigate whether
temporal acoustic features accurately predict fluency status using a supervised machine learning approach
(Aim 1a), and which features are most important to clinical distinctions of interest (fluent v. non-fluent; present
v. absent motor speech impairment; Aim 1b). In Aim 2, we will determine the underlying speech, language, and
cognitive contributors to inter-individual variability in temporal acoustic measures, thereby augmenting the
explanatory power of study results. These aims are a first step toward an interpretable and automatable
predictive model of fluency in PWA that can be generalized to novel diagnostic situations. Results of this
research will help clinicians identify important features for efficient assessment of and treatment planning for
patients as well as provide a mechanistic understanding of surface level features by mapping those features to
explanatory clinical sub-constructs.
项目概要
在大约 200 万患有中风后失语症的美国人中,许多人都遇到了困难
言语表达使日常沟通变得费力、低效且充满压力。1,32
失语症(PWA),言语不流利通常被视为一种明显的残疾,具有严重的社交障碍
36,37 鉴于这种功能显着性,言语流畅性是评估、监控、
并治疗。然而,以全面的方式索引流畅性是一个长期的临床挑战。
可解释、高效7,当前的方法依赖于专家临床医生的评级或时间密集型
使用详细编码进行语言分析。相比之下,时间声学测量是客观测量
可以自动或半自动地从连接的语音中导出。先前的研究有
证明言语输出的速率和节奏反映了言语和语言的潜在障碍
语言(例如,运动语音、词汇检索),建议使用时间声学测量来索引
PWA 不流利。当前研究的目标是调查使用自动时间
声学特征可识别不流利的失语症并更好地理解潜在的言语、语言和
这些表面语音特征背后的认知结构。为了实现这一目标,我们利用机器
学习技术作为预测建模方法的一部分来识别语音特征,其临床实用性
可以概括为未来失语流畅性评估提供信息。在目标 1 中,我们将调查是否
使用监督机器学习方法,时间声学特征准确预测流利度状态
(目标 1a),以及哪些特征对于感兴趣的临床区别最重要(流利与非流利;目前
v. 不存在运动性言语障碍;目标 1b)。在目标 2 中,我们将确定潜在的语音、语言和
认知因素对时间声学测量的个体间差异有贡献,从而增强了
研究结果的解释力。这些目标是迈向可解释和自动化的第一步
PWA 流畅度的预测模型,可以推广到新的诊断情况。结果
研究将帮助临床医生确定重要特征,以便有效评估和制定治疗计划
患者以及通过将这些特征映射到表面水平特征来提供对表面特征的机械理解
解释性临床子结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Claire Elizabeth Cordella其他文献
Claire Elizabeth Cordella的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Claire Elizabeth Cordella', 18)}}的其他基金
Detecting and classifying non-fluent speech in aphasia using machine learning
使用机器学习对失语症患者的不流利言语进行检测和分类
- 批准号:
10633113 - 财政年份:2022
- 资助金额:
$ 0.25万 - 项目类别:
Detecting and classifying non-fluent speech in aphasia using machine learning
使用机器学习对失语症患者的不流利言语进行检测和分类
- 批准号:
10459913 - 财政年份:2022
- 资助金额:
$ 0.25万 - 项目类别:
Mechanisms of apraxia of speech in primary progressive aphasia
原发性进行性失语症言语失用的机制
- 批准号:
9190796 - 财政年份:2016
- 资助金额:
$ 0.25万 - 项目类别:
Mechanisms of apraxia of speech in primary progressive aphasia
原发性进行性失语症言语失用的机制
- 批准号:
9320013 - 财政年份:2016
- 资助金额:
$ 0.25万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 0.25万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




