cloudSLEAP: Maximizing accessibility to deep learning-based motion capture
cloudSLEAP:最大限度地提高基于深度学习的动作捕捉的可访问性
基本信息
- 批准号:10643661
- 负责人:
- 金额:$ 262.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdoptionAnimal BehaviorAnimal ModelAnimalsBRAIN initiativeBehaviorBehavioralBody partBrainCloud ComputingCloud ServiceCollaborationsCommunicationCommunitiesComplexComputer HardwareComputer softwareDataData SetDedicationsDemocracyDependenceDevelopmentDocumentationEcosystemEducational ActivitiesEnsureEnvironmentEquityEthologyEventFutureGoalsIndustryInformaticsInfrastructureInstitutionInternetInvestmentsLabelLibrariesModelingModernizationMotionNeurosciencesOccupationsOnline SystemsOutcomeOutputPersonsPostureQualifyingResearchResearch PersonnelResolutionResourcesRunningServicesSoftware EngineeringStandardizationSystemTechnical ExpertiseTechnologyTestingTrainingTraining and EducationTraining and InfrastructureVisualizationWorkcloud basedcomputer infrastructurecomputerized toolscomputing resourcescostcost effectivedata archivedata formatdata repositorydata standardsdeep learningexperiencegigabytegraphical user interfacelearning strategylight weightmeetingsnext generationopen sourcepublic repositoryrecruittoolusabilityvirtualvirtual machineweb platform
项目摘要
cloudSLEAP – PROJECT SUMMARY/ABSTRACT
Understanding how the brain produces complex behavior is a central goal of neuroscience, but quantifying
behavior is technically challenging, particularly in unrestrained and naturalistic settings. Tools that are able to
overcome these limitations leverage deep learning to achieve robust markerless motion capture, enabling
characterization of behavior through precise positional tracking of body parts from standard videos of behavior.
Unfortunately, like most deep learning systems, existing pose tracking software requires technical expertise to
manage the complex software dependencies required for deep learning, and investment in expensive
computational hardware (GPUs), both of which curtail equitable access to this technology. This project
proposes cloudSLEAP, a platform that builds on the widely used multi-animal pose tracking software SLEAP to
address these barriers by providing the infrastructure necessary to run the entire pose tracking workflow
through cloud-based systems. This platform enables annotation, visualization and sharing pose tracking
datasets directly from the browser, eliminating the need for installation and management of desktop-based
software. cloudSLEAP will support data formats from all currently existing tools for pose tracking, and will be
integrated with existing data standards and repositories such as NeurodataWithoutBorders and DANDI to
ensure that all outputs of cloudSLEAP are standardized and FAIR-compliant. Users will be able to use
cloudSLEAP to train pose tracking models on their own data through a cloud-based job orchestration system,
eliminating the complexity of deep learning library dependencies. Leveraging the highly efficient model
configurations provided by SLEAP, cloudSLEAP will provide users with free computational resources on the
cloud to train pose models. This capability effectively eliminates the need for investment in local GPU
hardware, thereby removing the single biggest barrier to entry for researchers from under-resourced
institutions. The entire platform will be developed as open-source software on public repositories from the start,
and all data used for testing and development will be freely available. A core goal for this project is to ensure
that cloudSLEAP maximizes accessibility to behavior quantification technology to the widest range of
practitioners. To this end, the first aim of this proposal will be to establish a broad-based community of beta
testers that represents the diversity of institutions in the BRAIN Initiative and wider neuroscience community.
Beta testers will be invited to collaborate throughout development via regular virtual Town Hall meetings,
in-person events, direct communication channels and open discussion forums. These efforts will additionally
produce documentation and didactic materials that will be used for training and education activities. By
ensuring that diverse perspectives are included from the very onset of the project, cloudSLEAP will enable truly
equitable access and dissemination of a crucial part of the modern neuroscience toolkit.
cloudSLEAP -项目摘要/摘要
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast and efficient root phenotyping via pose estimation.
通过姿态估计快速有效地进行根表型分析。
- DOI:10.1101/2023.11.20.567949
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Berrigan,ElizabethM;Wang,Lin;Carrillo,Hannah;Echegoyen,Kimberly;Kappes,Mikayla;Torres,Jorge;Ai-Perreira,Angel;McCoy,Erica;Shane,Emily;Copeland,CharlesD;Ragel,Lauren;Georgousakis,Charidimos;Lee,Sanghwa;Reynolds,Dawn;Talgo,Ave
- 通讯作者:Talgo,Ave
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Talmo D. Pereira其他文献
Quantifying Humans’ Priors Over Graphical Representations of Tasks
量化人类对任务图形表示的优先级
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Gecia Bravo Hermsdorff;Talmo D. Pereira;Y. Niv - 通讯作者:
Y. Niv
To Fight or Not to Fight
打还是不打
- DOI:
10.1016/j.neuron.2017.08.029 - 发表时间:
2017 - 期刊:
- 影响因子:16.2
- 作者:
Talmo D. Pereira;Mala Murthy - 通讯作者:
Mala Murthy
Talmo D. Pereira的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 262.32万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 262.32万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 262.32万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 262.32万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 262.32万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 262.32万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 262.32万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 262.32万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 262.32万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 262.32万 - 项目类别:
Research Grant














{{item.name}}会员




