Depression as a disease of network disruption: learning from multiple sclerosis
抑郁症是一种网络中断疾病:从多发性硬化症中学习
基本信息
- 批准号:10643057
- 负责人:
- 金额:$ 19.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdultAffectAgeAtrophicAttentionBiological MarkersBrainBrain regionChronic DiseaseClinicalClinical TrialsClinical assessmentsCognitionComputational TechniqueComputerized Medical RecordComputing MethodologiesDataData SetDiagnosisDimensionsDiseaseDorsalExclusionFascicleFemaleFiberFoundationsFunctional disorderHeterogeneityImageImmuneImpairmentKnowledgeLearningLesionLocationMagnetic Resonance ImagingMapsMeasuresMediatingMediationMedicalMental DepressionMentored Patient-Oriented Research Career Development AwardMentorshipMimosaModelingMultiple SclerosisNeurocognitiveParticipantPatientsPatternPennsylvaniaPerformancePersonsPhenotypePrevalenceProcessPsychiatryPublic HealthRecording of previous eventsReproducibilityResearchSamplingSeveritiesSex DifferencesSocietiesStrokeStructureSymptomsSystemTechniquesTestingTrainingUnited StatesUniversity resourcesVisitWhite Matter Diseasealgorithmic methodologiesautomated segmentationbiotypesclinical carecognitive functioncognitive testingcomorbid depressioncomorbiditycostdepressive symptomsexperiencegray matterindividual variationinstrumentmachine learning algorithmmachine learning methodmalenetwork dysfunctionneuropsychiatric symptompredictive modelingprogramsprospectivepsychiatric symptomrecruitsupervised learningsymptomatologytooltreatment stratificationwhite matter
项目摘要
PROJECT ABSTRACT/SUMMARY
Multiplesclerosis (MS) is an immune-mediatedneurological disorder that affects one million people in
the United States. Up to 50% of patients with MS experience depression, yet the mechanisms of depression in
MS remain under-investigated. MS is characterized by white matter lesions, suggesting that brain network
disruption may underly depression symptoms. Studies of medically healthy participants with depression have
described associations between white matter variability and depressive symptoms, but frequently exclude
participants with medical comorbidities and thus cannot be extrapolated to people with intracranial diseases.
Previous research using lesion network mapping, a technique for mapping heterogeneous gray matter lesions
to neuropsychiatric symptoms, has demonstrated that strokes in gray matter associated with depression disrupt
a reproducible depression network. However, such techniques have never been applied to white matter disease
or MS. Studying white matter lesions associated with depression in MS may provide a way to understand both
the pathophysiology of depression in MS and general network mechanisms of depression more broadly. The
purpose of this current study is to investigate how brain network disruption underlies depression by learning from
the example of multiple sclerosis. In Aim 1, I will delineate how depression in adults with MS is associated with
white matter lesion location and burden in a retrospective sample of 1,554 MS patients with research-grade 3T
MRIs acquired as part of clinical care. Depression and MS diagnoses will be obtained from the electronic medical
record. While this sample provides an ideal dataset for developing a model, the electronic medical record does
not contain granular depression measures. In Aim 2, I will obtain structured clinical and cognitive assessments
for MS patients and prospectively evaluate white matter integrity as a predictor of dimensional depressive
symptoms. However, it is possible that symptoms of depression may reflect heterogenous brain network
disruption patterns. Therefore, in Aim 3, I will use advanced semi-supervised machine learning methods to parse
heterogeneity in MS white matter lesion burden in the retrospective sample and test whether this model predicts
phenotypic heterogeneity in our deeply-phenotyped prospective sample. The support of the K23 award will
provide the applicant with the training necessary to achieve these aims. The training objectives will be
accomplished with the support of an outstanding mentorship team, Drs. Satterthwaite, Shinohara, Bassett, Bar-
Or, Fox, McCoy, and the world class resources of the University of Pennsylvania. Together, the proposed
scientific aims and training objectives will form the foundation for an independent research program that will use
techniques from computational psychiatry to understand depression in patients with medical comorbidities.
项目摘要/总结
多发性硬化症(MS)是一种免疫介导的神经系统疾病,
美国的高达50%的MS患者患有抑郁症,但抑郁症的机制,
MS仍在调查中。MS的特征是白色病变,表明脑网络
精神分裂可能是抑郁症的潜在症状。对健康的抑郁症参与者的研究表明,
描述了白色物质变异性和抑郁症状之间的联系,但经常排除
参与者患有医学共病,因此不能外推到患有颅内疾病的人。
以前的研究使用病变网络映射,映射异质性灰质病变的技术
神经精神症状,已经证明,中风的灰质与抑郁症中断,
一个可复制的抑郁网络然而,此类技术从未应用于白色物质疾病
研究多发性硬化症中与抑郁症相关的白色病变可能提供一种理解两者的方法
MS中抑郁症的病理生理学和更广泛的抑郁症的一般网络机制。的
目前这项研究的目的是研究如何通过学习大脑网络中断导致抑郁症,
多发性硬化症的例子。在目标1中,我将描述成年多发性硬化症患者的抑郁症与以下因素的关系:
1,554例研究级3 T MS患者的回顾性样本中的白色病变位置和负荷
MRI作为临床护理的一部分。抑郁症和MS诊断将从电子医疗设备中获得。
记录虽然此示例为开发模型提供了理想的数据集,
不含颗粒状抑制措施。在目标2中,我将获得结构化的临床和认知评估
并前瞻性评价白色物质完整性作为维度抑郁的预测因子
症状然而,抑郁症的症状可能反映了异质性的脑网络
破坏模式因此,在目标3中,我将使用先进的半监督机器学习方法来解析
回顾性样本中MS白色病变负荷的异质性,并检验该模型是否预测
表型异质性在我们的深表型前瞻性样本。K23奖的支持将
向申请人提供实现这些目标所需的培训。培训目标将是
在一个杰出的导师团队的支持下完成,Satterthwaite博士,Shinohara,Bassett,Bar-
或者,福克斯,麦考伊,和宾夕法尼亚大学的世界级资源。在一起,拟议的
科学目标和训练目标将构成一个独立研究计划的基础,
从计算精神病学的技术来了解抑郁症患者的医疗合并症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erica Berlin Baller其他文献
Erica Berlin Baller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 19.49万 - 项目类别:
Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 19.49万 - 项目类别:
Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 19.49万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 19.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 19.49万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 19.49万 - 项目类别:
Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
- 批准号:
2230829 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 19.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




