Improving Prognostication for Traumatic Brain Injury
改善创伤性脑损伤的预后
基本信息
- 批准号:10643695
- 负责人:
- 金额:$ 17.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAdmission activityAmeliaAreaAwardBiological MarkersCalibrationCaringClinicalClinical DataClinical TrialsClinical stratificationCommunicationCritical IllnessDataDecision MakingDeliriumDevelopmentDevelopment PlansDiscriminationElementsEngineeringEnrollmentEnvironmentFamilyFunctional disorderFundingGlasgow Outcome ScaleGlial Fibrillary Acidic ProteinGoalsGrantHospitalizationHospitalsHourImageImpaired cognitionImpairmentInjuryInpatientsInstitute of Medicine (U.S.)K-Series Research Career ProgramsKnowledgeLaboratoriesLeadershipLogistic RegressionsLong-Term EffectsLongterm Follow-upMRI ScansMedicineMentorsMentorshipModelingMultiple TraumaNervous System PhysiologyNeurocognitiveNeurologicNeuronal PlasticityOrganOutcomePatient CarePatient SelectionPatientsPatternPersonsPositioning AttributePredictive FactorPrincipal InvestigatorProviderPublic HealthRecoveryRecovery of FunctionReportingResearchResearch PriorityScientistSignal TransductionStatistical ModelsStratificationSubgroupSurgeonSurvivorsTBI PatientsTBI treatmentTestingTimeTrainingTranslatingTraumaTraumatic Brain InjuryTraumatic Brain Injury recoveryUCHL1 geneUnited States National Academy of SciencesUnited States National Institutes of HealthUpdateWorkX-Ray Computed Tomographybrain dysfunctioncareer developmentclinical careclinical decision-makingclinical imagingclinical translationcognitive recoverycohortexpectationexperiencefollow-upfunctional outcomesimaging biomarkerimprovedindividual patientmodel developmentmultidisciplinaryneuroimagingnovelpatient orientedpatient responsibilitiespredictive modelingprognosticprognostic modelprognosticationradiomicsresiliencerisk predictionsevere injuryskillsspecific biomarkerssurvivorshipsymposium
项目摘要
PROJECT SUMMARY/ABSTRACT
Despite more than 5 million people living in the U.S. with the long-term effects of traumatic brain injury
(TBI), it remains unknown at what point the TBI functional recovery trajectory is fixed. Existing TBI prognostic
models are imperfect and static, relying on data from admission and the first 6 hours only. Current models
explain only one-third of the variability in outcomes. Despite the multiple CT and MRI scans obtained in TBI
clinical care, neuroimaging remains underutilized for TBI prognostics. Image-based biomarkers and radiomics
can extract predictive signals from neuroimaging already being obtained. Prognostication matters: better
prognostics translate to better patient-centered clinical decision making and better prognostic stratification for
clinical trials. Multiple TBI therapies have failed in clinical translation due to basic challenges in patient
selection and predicting TBI recovery. At many hospitals across the U.S., trauma surgeons are the primary
providers responsible for patients with hospitalized TBI. We can and should do better by developing a mature
quantitative approach to prognostication that incorporates time-varying clinical data, advanced statistical
modeling, TBI-specific biomarkers, and image-based biomarkers from clinical imaging already being obtained.
This career development plan (PI: Amelia W. Maiga, Trauma Surgeon) helps sustain a minimum of 75%
protected effort to hone her research expertise and eventual independence in advanced statistical modeling,
clinical trials, and neuroimaging analysis for TBI prognostication. The research specific aims are to: AIM 1)
build and validate a TBI prognostic model for 12-month functional outcomes with rich time-varying clinical data,
radiomics imaging analysis, and biomarkers using two NIH cohorts (R01GM120484 and U01NS086090); and AIM
2) conduct a trajectory analysis of long-term functional and neurocognitive outcomes after TBI.
This career development plan for Dr. Maiga integrates a) advanced didactics in clinical trials and
neurocognitive follow-up in the critically injured, sophisticated statistical modeling, imaging analysis, and
scientific communication and leadership; b) participation in local, regional, and national conferences to
advance expertise in the above areas; c) a multidisciplinary mentored research experience; and d) an
outstanding environment to propel towards independence. Her mentorship team consists of Drs. Mayur B.
Patel (Primary Mentor, trauma, critical illness and TBI); Pratik P. Pandharipande (cognitive impairment);
Rameela Raman (prognostic modeling, trajectory analysis); James C. Jackson (long-term outcomes); and
Bennett A. Landman (neuroimaging, radiomics), supported by a Research Advisory Council of Drs. E. Wesley
Ely (Director of Critical Illness and Brain Dysfunction Center); Robert S. Dittus (Director of Vanderbilt’s Institute
of Medicine and Public Health); Geoff T. Manley (PI TRACK-TBI; Transforming Research and Clinical
Knowledge in TBI). This research award will position Dr. Maiga to become a leader in TBI prognostics.
项目概要/摘要
尽管美国有超过 500 万人受到创伤性脑损伤的长期影响
(TBI),目前尚不清楚 TBI 功能恢复轨迹何时固定。现有 TBI 预后
模型不完善且静态,仅依赖于入场和前 6 小时的数据。当前型号
只能解释结果的三分之一的变异性。尽管在 TBI 中获得了多次 CT 和 MRI 扫描
临床护理中,神经影像学在 TBI 预后方面仍未得到充分利用。基于图像的生物标志物和放射组学
可以从已经获得的神经影像中提取预测信号。预测很重要:更好
预后转化为更好的以患者为中心的临床决策和更好的预后分层
临床试验。由于患者的基本挑战,多种 TBI 疗法在临床转化中失败
选择和预测 TBI 恢复。在美国许多医院,创伤外科医生是主要的
负责住院 TBI 患者的医疗服务提供者。我们可以而且应该通过发展成熟的
定量预测方法,结合了随时间变化的临床数据、先进的统计数据
模型、TBI 特异性生物标志物以及来自临床成像的基于图像的生物标志物已经获得。
该职业发展计划(PI:Amelia W. Maiga,创伤外科医生)有助于维持至少 75%
努力磨练她的研究专业知识并最终在高级统计建模方面取得独立性,
TBI 预测的临床试验和神经影像学分析。研究的具体目标是: AIM 1)
利用丰富的时变临床数据构建并验证 12 个月功能结果的 TBI 预后模型,
使用两个 NIH 队列(R01GM120484 和 U01NS086090)进行放射组学成像分析和生物标志物;和目标
2) 对 TBI 后的长期功能和神经认知结果进行轨迹分析。
Maiga 博士的职业发展计划整合了 a) 临床试验中的先进教学法和
重伤患者的神经认知随访、复杂的统计模型、影像分析和
科学沟通和领导力; b) 参加地方、区域和国家会议
提高上述领域的专业知识; c) 多学科指导的研究经验;和 d)
优越的环境,推动独立。她的导师团队由博士组成。马尤尔 B.
Patel(主要导师,创伤、危重疾病和 TBI); Pratik P. Pandharipande(认知障碍);
Rameela Raman(预后建模、轨迹分析); James C. Jackson(长期成果);和
Bennett A. Landman(神经影像学、放射组学),由博士研究咨询委员会支持。 E·韦斯利
Ely(危重疾病和脑功能障碍中心主任); Robert S. Dittus(范德比尔特研究所所长
医学和公共卫生学院); Geoff T. Manley(PI TRACK-TBI;转变研究和临床
TBI 知识)。该研究奖项将使 Maiga 博士成为 TBI 预测领域的领导者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amelia Maiga其他文献
Amelia Maiga的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 17.46万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 17.46万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 17.46万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 17.46万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 17.46万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 17.46万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 17.46万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 17.46万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 17.46万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 17.46万 - 项目类别:
Research Grant














{{item.name}}会员




