In vivo hepato-renal metabolic flux dysregulation in obesity
肥胖体内肝肾代谢通量失调
基本信息
- 批准号:10644303
- 负责人:
- 金额:$ 12.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAdultBiological ModelsCell RespirationChronicChronic Kidney FailureCitric Acid CycleContinuity of Patient CareCoupledDataDevelopmentDevelopment PlansDiabetes MellitusDiabetic NephropathyDietary InterventionDiseaseDisease ProgressionEnsureEtiologyExhibitsFatty AcidsFatty LiverFatty acid glycerol estersFoundationsGeneticGluconeogenesisGlucoseGoalsHealthHepaticHumanHypoglycemiaImpairmentInflammationInterventionKidneyKnock-outKnowledgeLinkLipidsLiverMediatingMentorsMetabolicMetabolic ControlMetabolic DiseasesMetabolic dysfunctionMetabolismMethodsMitochondriaModelingMusNon-Insulin-Dependent Diabetes MellitusObesityOrganOvernutritionOxidative StressPathogenicityPathway interactionsPatient CarePatientsPredispositionPrevalenceProximal Kidney TubulesPublishingRegulationResearchResearch InfrastructureRoleSteatohepatitisStressTechniquesTestingTherapeutic InterventionTimeTissuesTrainingTransgenic MiceUniversitiesWorkburden of illnesscareercareer developmentclinically relevantcounterregulationdietaryeuglycemiaglucose metabolismglucose productionglycemic controlimprovedin vivoinhibitorinnovationinsightkidney metabolismlensliver injuryliver metabolismmembermetabolic abnormality assessmentmitochondrial dysfunctionmitochondrial metabolismnew technologynon-alcoholic fatty liver diseasenovelnovel therapeuticsobesity developmentoxidationpersonalized carepreservationstable isotopetherapeutic targettissue injurywestern diet
项目摘要
Project Summary
The liver and kidney are the major organs where glucose biosynthesis is coupled to mitochondrial
metabolism. Previous studies demonstrate that overnutrition accelerates whole-body gluconeogenesis
(GNG) and citric acid cycle (CAC) activity in vivo. A limitation of prior research is that the unique
contributions of the liver and kidney to whole-body GNG and CAC fluxes have been difficult to disentangle
in vivo. The inability to discern hepatic from renal metabolic fluxes represents a significant gap in
knowledge, as obesity may not only cause an ectopic accumulation of lipid but also an “ectopic
redistribution” of gluconeogenic function that disproportionately stresses the kidney. We hypothesize that
renal GNG and CAC activity are disproportionately elevated in obesity, which contributes to the
dysregulation of whole-body glucose metabolism and promotes mitochondrial dysfunction and oxidative
tissue damage in the kidney. The scientific aims of this proposal are to (i) determine whether the
progressive development of obesity disproportionately impacts renal gluconeogenic and oxidative
metabolism, (ii) assess whether gluconeogenic overload on the kidney accelerates oxidative metabolism
and stress during obesity, and (iii) identify metabolic mechanism(s) by which SGLT2 inhibitor treatment
reduces hepato-renal lipotoxicity in vivo. The aims of our project will be accomplished using a novel,
metabolic flux modeling system that simultaneously determines gluconeogenic and oxidative metabolic
fluxes in the liver and kidney in vivo. This work is innovative because it examines the etiology and
treatment of metabolic disease through the lens of multi-organ fluxomics while focusing on an
understudied aspect of gluco(dys)regulation. It is significant because it will identify organ-specific
metabolic nodes that may be better targeted to improve glycemic control and reduce damage in the kidney
and liver. Results from this K01 project, the unique expertise of each member of my mentoring committee,
and the diabetes research infrastructure at Vanderbilt University will be leveraged to achieve my career
objective of an independent career studying metabolic regulation in diabetic kidney disease and
hypoglycemic counter-regulation. As such, this project integrates a career development plan with the
training needed to bolster my disease-state expertise, grantsmanship, and expand my analytical
capabilities to ensure a smooth transition toward research independence.
项目摘要
肝脏和肾脏是葡萄糖生物合成与线粒体偶联的主要器官。
新陈代谢。先前的研究表明,营养过剩会加速全身的糖异生
(GNG)和体内柠檬酸循环(CAC)活性。先前研究的一个局限性是,独特的
肝和肾对全身GNG和CAC通量的贡献一直难以厘清
在活体内。无法区分肝脏和肾脏的代谢流量代表着一个显著的差距
知识,因为肥胖不仅可能导致脂肪的异位堆积,而且还会导致
“糖异生功能的重新分配”,对肾脏造成不成比例的压力。我们假设
肥胖者肾脏GNG和CAC活性不成比例地升高,这是导致
全身糖代谢失调,促进线粒体功能障碍和氧化
肾脏的组织损伤。这项提议的科学目的是:(I)确定
肥胖的进行性发展对肾脏糖异生和氧化的影响不成比例
代谢,(Ii)评估肾脏上的糖异生超负荷是否会加速氧化代谢
和肥胖过程中的应激,以及(Iii)确定SGLT2抑制剂治疗的代谢机制(S
降低体内肝肾脂肪毒性。我们项目的目标将通过一部小说来实现,
同时确定糖异生代谢和氧化代谢的代谢通量模拟系统
体内肝和肾中的流量。这项工作具有创新性,因为它研究了病原学和
从多器官流体学的视角治疗代谢性疾病
对葡萄糖(Dys)调节的研究不足。它具有重要意义,因为它将识别特定的器官
代谢节点可能更有针对性地改善血糖控制和减少肾脏损害
还有肝脏。这个K01项目的结果,我的指导委员会每个成员的独特专业知识,
范德比尔特大学的糖尿病研究基础设施将被用来实现我的职业生涯
研究糖尿病肾病代谢调节的独立职业目标和
降血糖反调节。因此,该项目将职业发展计划与
需要进行培训,以增强我的疾病状态专业知识、勇气和分析能力
确保向研究独立平稳过渡的能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clinton Michael Hasenour其他文献
Clinton Michael Hasenour的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
- 批准号:
MR/Z503605/1 - 财政年份:2024
- 资助金额:
$ 12.06万 - 项目类别:
Research Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
- 批准号:
2402691 - 财政年份:2024
- 资助金额:
$ 12.06万 - 项目类别:
Standard Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
- 批准号:
2336167 - 财政年份:2024
- 资助金额:
$ 12.06万 - 项目类别:
Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
- 批准号:
24K12150 - 财政年份:2024
- 资助金额:
$ 12.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
- 批准号:
2341428 - 财政年份:2024
- 资助金额:
$ 12.06万 - 项目类别:
Standard Grant
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
- 批准号:
DE240100561 - 财政年份:2024
- 资助金额:
$ 12.06万 - 项目类别:
Discovery Early Career Researcher Award
Laboratory testing and development of a new adult ankle splint
新型成人踝关节夹板的实验室测试和开发
- 批准号:
10065645 - 财政年份:2023
- 资助金额:
$ 12.06万 - 项目类别:
Collaborative R&D
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 12.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
- 批准号:
23K07552 - 财政年份:2023
- 资助金额:
$ 12.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 12.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




