Taxi ROADmAP (Realizing Optimization Around Diet And Physical activity)
出租车 ROADmAP(实现饮食和身体活动优化)
基本信息
- 批准号:10643699
- 负责人:
- 金额:$ 74.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-11 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAffectAttitudeBehaviorBehavioralBeliefBlood PressureBody Weight decreasedBody mass indexCardiovascular DiseasesCholesterolCognitiveCommunitiesConsolidated Framework for Implementation ResearchConsumptionCounselingDataDevelopmentDietEnvironmentEssential workerExpectancyHealthHealth BenefitHealth FairsHealthcare SystemsHybridsImmigrantIndividualIntakeInterventionInterviewKnowledgeLeadLicensingLinkLiteratureMediationMediatorMethodsMinorityMinority GroupsMonitorMultilingualismNew York CityNot Hispanic or LatinoObesityOccupationalOutcomeOutcome StudyOverweightParticipantPersonsPhysical activityPopulationRandomizedResourcesRiskSelf EfficacySurveysTelephoneTestingText MessagingTranslationsUnhealthy DietWeightWorkWorkplacebehavior changecancer health disparitycancer riskcardiovascular disorder riskcare outcomescommunity organizationscommunity settingcostcost estimatedesigndiabetes prevention programeffectiveness studyeffectiveness/implementation hybridexperiencehealth care availabilityhealth care servicehealth disparityhealth inequalitieshybrid type 1 designimplementation interventionimplementation scienceimplementation strategyimplementation studyimprovedincremental cost-effectivenessinnovationintervention deliverylifestyle interventionlow socioeconomic statusmultiphase optimization strategynutritionobesity riskobesity treatmentphysical inactivityprimary outcomeprocess evaluationprogramsrecruitsecondary outcomesedentary lifestylesocial cognitive theorytheoriestooltreatment optimizationuptakevirtualvirtual environmentwaist circumferenceweight loss interventionweight loss program
项目摘要
Project Summary
Taxi ROADmAP (Realizing Optimization Around Diet And Physical activity) is an effectiveness-
implementation hybrid type 1 design using the Multiphase Optimization Strategy (MOST) to
address the overweight and obesity crisis in a growing, at-risk, multilingual low socioeconomic
status (SES), hard-to-reach, predominantly immigrant and minority essential worker population:
taxi and for-hire vehicle (FHV) drivers (Lyft, Uber, etc.). MOST, an innovative framework, involves
highly efficient randomized experimentation to assess the effects of individual treatment
components to guide assembly of an optimized treatment package that achieves target outcomes
with the lowest resource consumption and participant burden. Hybrid trials, which blend
effectiveness and implementation studies, can lead to more rapid translational uptake and more
effective implementation. There are over 750,000 licensed taxi and FHV drivers in in the U.S. and
over 185,000 in New York City (NYC). They have higher rates of overweight/obese range body
mass index (BMI) than New Yorkers in general (77% vs 56%) and have high rates of elevated
waist circumference, sedentary behavior, poor diets, and health care services underutilization.
Obesity, a shared cardiovascular disease and cancer risk, and its consequences affect minority
and low SES populations disproportionately. Modifiable factors, such as physical inactivity,
compound drivers’ obesity risk. While there is much evidence on effective multicomponent lifestyle
interventions focused on weight loss in non-minority populations, such as the Diabetes Prevention
Program (DPP) and Look AHEAD, these programs were not designed to be translatable to
community settings and are considered too expensive and burdensome to be widely disseminated.
There is a paucity of data on how to optimize such approaches for minorities (who have benefitted
less from weight loss programs than non-Hispanic whites), to reduce participant burden and costs
but still lead to meaningful weight loss. Even less literature addresses implementation potential
and strategies for such interventions. ROADmAP builds on our unique preliminary work and
uses a hybrid type 1 design and MOST, to address these gaps. ROADmAP will test 4
evidence- and theory-based (Social Cognitive Theory [SCT]) behavior change intervention
components, developed and piloted by the Memorial Sloan Kettering Immigrant Health and Cancer
Disparities Center, and which include DPP and Look AHEAD features. We will use MOST to
identify which of the 4 components contribute most significantly and cost-effectively to weight loss
among NYC drivers recruited at workplace health fairs (HFs) and virtually. Objectives are to
apply MOST to design an optimized version of a scalable, lifestyle intervention for taxi/FHV
drivers, and then to conduct a mixed methods multistakeholder process evaluation to
facilitate widespread intervention implementation.
项目摘要
出租车路线图(围绕饮食和体力活动实现优化)是一种有效性-
使用多阶段优化策略(MOST)实现混合类型1设计
在日益增长的、面临风险的、多语种的低社会经济中解决超重和肥胖危机
身份(SES),难以接触,主要是移民和少数基本工人人口:
出租车和出租车辆(FHV)司机(Lyft、Uber等)。MOST是一个创新的框架,涉及
评估个体化治疗效果的高效随机试验
用于引导组装实现目标结果的优化治疗包的组件
以最低的资源消耗和参与者负担。杂交试验,它混合了
有效性和实施研究,可以带来更快的翻译理解和更多
有效实施。美国有超过75万名有执照的出租车和FHV司机,
纽约市(NYC)有超过18.5万人。他们超重/肥胖的比率更高。
体重指数(BMI)高于纽约人(77%比56%),而且有很高的升高率
腰围、久坐行为、不良饮食和保健服务未得到充分利用。
肥胖,一种共同的心血管疾病和癌症风险,及其后果影响少数人
和不成比例的低社会经济地位人群。可修改的因素,如身体不活动,
复合型司机的肥胖风险。虽然有很多证据表明有效的多元生活方式
干预措施侧重于非少数群体的减肥,如糖尿病预防
计划(DPP)和展望未来,这些计划并不是设计成可翻译到
在社区环境中传播,被认为过于昂贵和繁重,无法广泛传播。
关于如何为少数族裔(他们已经受益)优化这些方法的数据很少
比非西班牙裔白人更少的减肥计划),以减少参与者的负担和成本
但仍能带来有意义的减肥。涉及实施潜力的文献更少
以及此类干预的战略。路线图建立在我们独特的前期工作和
使用混合型1设计和MOST,以弥补这些差距。路线图将测试4
基于证据和理论(社会认知理论[SCT])的行为改变干预
组件,由斯隆·凯特琳移民健康与癌症纪念馆开发和试行
差异中心,其中包括DPP和展望功能。我们将使用MOST来
确定以下4种成分中哪些对减肥最有意义且最具成本效益
在工作场所健康博览会(HFs)和虚拟世界招募的纽约市司机中。目标是
最适用于为出租车/FHV设计可扩展的生活方式干预的优化版本
驱动因素,然后进行混合方法的多利益相关者过程评估
促进广泛干预措施的实施。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FRANCESCA M GANY其他文献
FRANCESCA M GANY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FRANCESCA M GANY', 18)}}的其他基金
Taxi ROADmAP (Realizing Optimization Around Diet And Physical activity)
出租车 ROADmAP(实现饮食和身体活动优化)
- 批准号:
10344795 - 财政年份:2022
- 资助金额:
$ 74.43万 - 项目类别:
Communicating with Oncology Nurses about Values from the Outset (CONVO): An Innovative Primary Palliative Care Intervention in English and Espanol
从一开始就价值观与肿瘤科护士沟通 (CONVO):一种创新的初级姑息治疗干预措施(英语和西班牙语)
- 批准号:
10269930 - 财政年份:2020
- 资助金额:
$ 74.43万 - 项目类别:
Taxi STEP (Social networks, Technology, and Exercise through Pedometers)
Taxi STEP(社交网络、技术和通过计步器锻炼)
- 批准号:
9251895 - 财政年份:2016
- 资助金额:
$ 74.43万 - 项目类别:
Taxi Health Access Interventions for Linkages and Lifestyle (HAILL)
针对联系和生活方式的出租车健康访问干预措施 (HAILL)
- 批准号:
8888154 - 财政年份:2015
- 资助金额:
$ 74.43万 - 项目类别:
Taxi Health Access Interventions for Linkages and Lifestyle (HAILL)
针对联系和生活方式的出租车健康访问干预措施 (HAILL)
- 批准号:
9070785 - 财政年份:2015
- 资助金额:
$ 74.43万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 74.43万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 74.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 74.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 74.43万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 74.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 74.43万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 74.43万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 74.43万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 74.43万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 74.43万 - 项目类别:
Standard Grant














{{item.name}}会员




