Durable fluid-like surface for sustainable biofilm inhibition
耐用的流体状表面可实现可持续的生物膜抑制
基本信息
- 批准号:10646770
- 负责人:
- 金额:$ 7.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccountingAdsorptionAnti-Bacterial AgentsAntibiotic ResistanceAntibioticsBacteriaBacterial AdhesionBiologicalBladderCatheter ManagementCatheterizationCathetersCellsChargeClinicalCollectionCommunitiesDevelopmentElectrostaticsEnterococcus faecalisEscherichia coliGram-Negative BacteriaHourHumanHydrogelsInvadedLiquid substanceMedical centerMicrobial BiofilmsMicrobiologyMicrofluidicsMolecularNosocomial InfectionsNucleic AcidsOutcomes ResearchPatientsPolymersPropertyProteinsPseudomonas aeruginosaSamplingSilanesSiliconesSilverSodium ChlorideSolidSurfaceTestingTimeUrinary tractUrineUropathogenViscosityacute careantimicrobial peptidebacterial communitybactericidecatheter associated UTIchemical bondcombatethylene glycolflexibilityfluidityimplantable deviceinnovationinterfacialintermolecular interactionnovelpathogenpathogenic bacteriapolymicrobial biofilmpreventsurface coating
项目摘要
Catheter-associated urinary tract infections (CAUTIs) account for more than 30% of acute care hospital infections.
Bacterial pathogens initially colonize and form biofilm on the catheters, and invade the bladder and eventually
the upper urinary tracts. Prolonged catheterization (~30 days) can increase the chance of CAUTIs to 100%.
Antibiotics prescribed for symptomatic CAUTIs are frequently unable to kill bacteria within the biofilm. Therefore,
inhibiting biofilm formation will significantly reduce the chance of CAUTIs. Catheter biofilms are often
polymicrobial with mixed bacterial communities. Durable biosurface coatings would be an advantageous
approach to inhibit biofilm formation without external control. Existing anti-bacterial surfaces include bactericidal
surfaces (e.g., antimicrobial peptide or silver modified surfaces) and anti-biofouling surfaces (e.g., hydrogel or
poly(ethyleneglycol) based polymer coatings), but all existing approaches are unable to inhibit biofilm
formation on catheters for a prolonged period. Here, we propose a conceptually new fluid-like and non-sticky
biosurface, namely a quasi-liquid surface, which can potentially inhibit biofilm for over 30 days. The quasi-liquid
surface will be made by tethering flexible polymer onto catheter materials with chemical bonding. The untethered
end is highly mobile and behave like a fluid. The innovation is to change the solid/bacterial interaction to quasi-
liquid/bacterial interaction and inhibit polymicrobial biofilm without directly killing bacteria. Our central
hypothesis is that the fluid-like surface will prevent protein adsorption and inhibit polymicrobial biofilm as an
integrated community during long-term catheterization. We will validate the hypothesis with two aims: (1) to study
the mechanism of E. coli biofilm inhibition, and (2) to validate biofilm inhibition of clinical isolates (i.e.,
uropathogenic strains) on the quasi-liquid surface. The team includes PI Dai at UT Dallas with expertise in
biosurfaces and microfluidics, Co-I Palmer with expertise in microbiology and antibiotic resistance in pathogenic
bacteria, and our collaborator Zimmern at UT Southwestern Medical Center with expertise in the management
of complicated UTIs in a variety of clinical settings. This two-year project aims to inhibit polymicrobial biofilm over
30 days that is challenging by a microbiological approach alone. The development of this novel quasi-liquid
surface and the understanding of the quasi-liquid/bacterial interaction will not only benefit the management of
CAUTIs but also open new avenues to better combat biofilms forming on other human implant devices.
导管相关性尿路感染(CUTI)占急性护理医院感染的30%以上。
细菌病原体最初在导管上定殖并形成生物膜,并侵入膀胱,最终在膀胱中形成细菌。
上尿路延长导管插入时间(约30天)可使发生急性胰腺炎的几率增加至100%。
针对有症状的尿路感染开具的抗生素通常无法杀死生物膜内的细菌。因此,我们认为,
抑制生物膜的形成将显著降低发生膀胱炎的机会。导管生物膜通常
多微生物与混合细菌群落。耐用的生物表面涂层将是有利的
在没有外部控制的情况下抑制生物膜形成的方法。现有的抗菌表面包括杀菌
表面(例如,抗微生物肽或银改性表面)和抗生物污染表面(例如,水凝胶或
基于聚(乙二醇)的聚合物涂层),但所有现有的方法都不能抑制生物膜
在导管上长时间形成。在这里,我们提出了一个概念上新的流体状和非粘性
生物表面,即准液体表面,其可以潜在地抑制生物膜超过30天。准液体
表面将通过将柔性聚合物用化学键连接到导管材料上而制成。The untethered
末端是高度移动的且表现得像流体。创新是将固体/细菌相互作用改变为准-
液体/细菌相互作用并抑制多微生物生物膜而不直接杀死细菌。我们的中央
一种假设是,流体状表面将阻止蛋白质吸附并抑制多微生物生物膜作为一种生物膜。
长期导尿期间的综合社区。我们将验证假设有两个目的:(1)研究
对E.大肠杆菌生物膜抑制,和(2)验证临床分离株的生物膜抑制(即,
尿路致病性菌株)在准液体表面上。该团队包括UT达拉斯的PI Dai,
生物表面和微流体,Co-I Palmer在病原微生物和抗生素耐药性方面具有专业知识,
细菌,我们的合作者Zimmern在UT西南医学中心的管理专业知识
在各种临床环境中的复杂性尿路感染。这个为期两年的项目旨在抑制多微生物生物膜超过
30天,这是具有挑战性的微生物方法单独。这种新型准液体的发展
表面和准液体/细菌相互作用的理解将不仅有利于管理
同时也为更好地对抗其他人体植入设备上形成的生物膜开辟了新的途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xianming Dai其他文献
Xianming Dai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
- 批准号:
2901619 - 财政年份:2024
- 资助金额:
$ 7.8万 - 项目类别:
Studentship
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
- 批准号:
EP/W027593/2 - 财政年份:2024
- 资助金额:
$ 7.8万 - 项目类别:
Research Grant
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
- 批准号:
24K17729 - 财政年份:2024
- 资助金额:
$ 7.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
- 批准号:
2871817 - 财政年份:2024
- 资助金额:
$ 7.8万 - 项目类别:
Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
- 批准号:
2903366 - 财政年份:2024
- 资助金额:
$ 7.8万 - 项目类别:
Studentship
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
- 批准号:
23H02303 - 财政年份:2023
- 资助金额:
$ 7.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
- 批准号:
2312325 - 财政年份:2023
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
- 批准号:
23KJ0192 - 财政年份:2023
- 资助金额:
$ 7.8万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
- 批准号:
2303933 - 财政年份:2023
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant
Science for Boundary Lubrication - Essence of Low Friction Mechanism Based on Structure and Dynamics of Additive Adsorption Layer
边界润滑科学——基于添加剂吸附层结构和动力学的低摩擦机制本质
- 批准号:
23H05448 - 财政年份:2023
- 资助金额:
$ 7.8万 - 项目类别:
Grant-in-Aid for Scientific Research (S)