Defining the architecture and activation mechanisms of SynGAP
定义SynGAP的架构和激活机制
基本信息
- 批准号:10646985
- 负责人:
- 金额:$ 17.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AffinityAllosteric RegulationArchitectureBiological AssayBiological MarkersBrainBrain DiseasesC-terminalC2 DomainCharacteristicsChemicalsCommunicationComplexComputer ModelsCoupledCytoskeletonDataDeuteriumDevelopmentDiseaseDockingExcitatory SynapseExhibitsFluorescent ProbesFoundationsFunctional disorderFutureGTPase-Activating ProteinsGlutamate ReceptorGoalsGuanosine Triphosphate PhosphohydrolasesHoloenzymesHumanHybridsHydrogenIntellectual functioning disabilityKnowledgeLearningLong-Term PotentiationMapsMass Spectrum AnalysisMembraneMembrane ProteinsMemoryMental disordersModelingMolecularMolecular ConformationMolecular NeurobiologyMonomeric GTP-Binding ProteinsMovementMultiprotein ComplexesMutagenesisMutationN-terminalNeuronsOutcomePH DomainPathway interactionsPhosphorylationPhosphorylation SitePlayProtein DynamicsProtein FootprintingProteinsProteomicsPublic HealthResearchRoentgen RaysRoleSchizophreniaShapesSignal TransductionSignaling ProteinSpecificitySpectrum AnalysisStructural ModelsStructureSurface Plasmon ResonanceSynapsesSynaptic plasticityTailTertiary Protein StructureTherapeuticactivated Protein Cautism spectrum disorderbiophysical techniquesbiophysical toolscrosslinkdensitydesignfrontierlink proteinpostsynapticprotein functionprotein structureras GTPase-Activating Proteinsrestraintscaffoldstructural biologystructural determinantstool
项目摘要
Project Summary
Excitatory synapses exhibit characteristic proteinaceous microcompartments at the membrane known as
the post-synaptic density (PSD). The PSD is richly organized into multi-protein complexes composed of
glutamate receptors, scaffolds, cytoskeleton, and signaling effectors. The dynamic reorganizations of the
higher-order architecture and composition of PSD signaling complexes underlies synaptic plasticity,
learning, and memory. Dissecting the interactions and allosteric communication mechanisms of the PSD
is a prerequisite for understanding the molecular underpinnings of synaptic plasticity. Synaptic signaling
complexes are large and highly dynamic, problematic targets for mainstay structural biology approaches.
The overarching goals of this project are to surmount the challenges of structural characterization of
PSD signaling complexes by applying a battery of protein footprinting, spectroscopies, chemical tools,
and proteomics approaches to probe protein structure in biologically relevant milieu. This project
focuses on the architecture, activation mechanisms, and scaffolding roles of SynGAP, an abundant PSD
GTPase-activating protein. SynGAP is critical to brain development, long-term potentiation, and spatial
learning. Importantly, SynGAP mutations in humans are associated with autism spectrum disorders,
schizophrenia, and intellectual disability. Despite its ubiquity and central signaling role, the architecture
and signaling mechanisms of SynGAP remain largely unknown. Defining the molecular mechanisms of
SynGAP signaling is critical for understanding the basis of brain disorders caused by SynGAP
dysfunction. Hybrid structural biology approaches will be integrated to build a structural model of the
multi-domain holoenzyme. These approaches are uniquely amenable to characterizing dynamic protein
interfaces and conformational changes in solution. Phosphorylation-induced conformational changes
will be defined to determine activation mechanisms. SynGAP apparently regulates opposing pathways
dictating synaptic strength via dual specificity toward both Ras and Rap. Specificity switching
mechanisms will be revealed by mapping structural determinants of Ras and Rap interactions. By
dissecting the structural basis for SynGAP function the proposed research will be a vital contribution to
the ongoing movement to characterize the molecular architecture of the PSD. Resolving SynGAP
signaling complex structure and mechanisms will clarify the basis of SynGAP-linked neuronal disorders
and spur the development of future therapeutics.
项目摘要
兴奋性突触在膜上表现出特征性的蛋白质微区室,
突触后密度(PSD)。PSD丰富地组织成多蛋白质复合物,
谷氨酸受体、支架、细胞骨架和信号效应物。企业的动态重组
PSD信号复合物的高级结构和组成是突触可塑性的基础,
学习和记忆。剖析PSD的相互作用和变构通讯机制
是理解突触可塑性的分子基础的先决条件。突触信号
复合物是大的和高度动态的,对于主流结构生物学方法来说是有问题的目标。
该项目的总体目标是克服结构表征的挑战,
PSD信号复合物通过应用一系列蛋白质足迹,光谱学,化学工具,
和蛋白质组学方法来探测生物相关环境中的蛋白质结构。这个项目
着重于SynGAP的结构、激活机制和支架作用,SynGAP是一种丰富的PSD
GTP酶激活蛋白。SynGAP对大脑发育、长时程增强和空间功能至关重要。
学习重要的是,人类的SynGAP突变与自闭症谱系障碍有关,
精神分裂症和智力残疾。尽管其无处不在和中央信号作用,
SynGAP的信号传导机制仍不清楚。定义的分子机制
SynGAP信号传导对于理解SynGAP引起的大脑疾病的基础至关重要
功能障碍混合结构生物学方法将被整合,以建立一个结构模型,
多结构域全酶这些方法是唯一适合于表征动态蛋白质
界面和溶液中的构象变化。磷酸化诱导的构象变化
将被定义以确定激活机制。SynGAP明显调节相反的途径
通过对Ras和Rap的双重特异性决定突触强度。特异性转换
机制将通过绘制Ras和Rap相互作用的结构决定因素来揭示。通过
解剖SynGAP功能的结构基础,拟议的研究将是一个至关重要的贡献,
正在进行的运动,以表征PSD的分子结构。解决SynGAP
信号复合物的结构和机制将阐明SynGAP相关神经元疾病的基础
并促进未来治疗学的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric Steven Underbakke其他文献
Eric Steven Underbakke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric Steven Underbakke', 18)}}的其他基金
Mapping The Domain Architecture And Conformations of Soluble Guanylate Cyclase
绘制可溶性鸟苷酸环化酶的结构域和构象
- 批准号:
8236975 - 财政年份:2010
- 资助金额:
$ 17.38万 - 项目类别:
Mapping The Domain Architecture And Conformations of Soluble Guanylate Cyclase
绘制可溶性鸟苷酸环化酶的结构域和构象
- 批准号:
7912395 - 财政年份:2010
- 资助金额:
$ 17.38万 - 项目类别:
Mapping The Domain Architecture And Conformations of Soluble Guanylate Cyclase
绘制可溶性鸟苷酸环化酶的结构域和构象
- 批准号:
8059707 - 财政年份:2010
- 资助金额:
$ 17.38万 - 项目类别:
Mapping The Domain Architecture And Conformations of Soluble Guanylate Cyclase
绘制可溶性鸟苷酸环化酶的结构域和构象
- 批准号:
8412033 - 财政年份:2010
- 资助金额:
$ 17.38万 - 项目类别:
相似海外基金
Molecular insights into the allosteric regulation of opioid receptors
阿片受体变构调节的分子见解
- 批准号:
DE240100931 - 财政年份:2024
- 资助金额:
$ 17.38万 - 项目类别:
Discovery Early Career Researcher Award
Allosteric regulation of lysine degradation as a novel pathophysiological mechanism in glutaric aciduria type 1
赖氨酸降解的变构调节作为 1 型戊二酸尿症的一种新的病理生理机制
- 批准号:
10720740 - 财政年份:2023
- 资助金额:
$ 17.38万 - 项目类别:
Elucidating the Mechanism for Allosteric Regulation of SIRT1 through the N-terminal Region
阐明 SIRT1 通过 N 末端区域变构调节的机制
- 批准号:
10627735 - 财政年份:2023
- 资助金额:
$ 17.38万 - 项目类别:
Allosteric Regulation of Actin Capping Protein: Mechanism and Significance
肌动蛋白加帽蛋白的变构调节:机制和意义
- 批准号:
10330809 - 财政年份:2022
- 资助金额:
$ 17.38万 - 项目类别:
Allosteric Regulation of Actin Capping Protein: Mechanism and Significance
肌动蛋白加帽蛋白的变构调节:机制和意义
- 批准号:
10797746 - 财政年份:2022
- 资助金额:
$ 17.38万 - 项目类别:
Structural and functional studies of allosteric regulation of metabolic enzymes
代谢酶变构调节的结构和功能研究
- 批准号:
RGPIN-2020-04281 - 财政年份:2022
- 资助金额:
$ 17.38万 - 项目类别:
Discovery Grants Program - Individual
Allosteric Regulation of Actin Capping Protein: Mechanism and Significance
肌动蛋白加帽蛋白的变构调节:机制和意义
- 批准号:
10552651 - 财政年份:2022
- 资助金额:
$ 17.38万 - 项目类别:
Allosteric regulation of human cystathionine beta-synthase
人胱硫醚β-合酶的变构调节
- 批准号:
10602404 - 财政年份:2022
- 资助金额:
$ 17.38万 - 项目类别:
Allosteric regulation of human cystathionine beta-synthase
人胱硫醚β-合酶的变构调节
- 批准号:
10381000 - 财政年份:2022
- 资助金额:
$ 17.38万 - 项目类别:
Structural basis for allosteric regulation of RyR1
RyR1 变构调节的结构基础
- 批准号:
10366087 - 财政年份:2021
- 资助金额:
$ 17.38万 - 项目类别: