Cell tracking in low-frame-rate video based on displacement prediction
基于位移预测的低帧率视频中的细胞跟踪
基本信息
- 批准号:10648570
- 负责人:
- 金额:$ 20.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:A549AddressAffectAirAlgorithmsAreaBiochemistryBioinformaticsBiologicalBiologyCell NucleusCellsCellular biologyCessation of lifeClassificationCloverConsumptionDataData SetDevelopmental BiologyDropsEnvironmentEquipmentEvaluationEventFormulationFutureGeneticHL60HealthHourImageLearningLinkLocomotionMCF10A cellsMDA MB 231Machine LearningMammalian CellManualsMeasuresMedicineMembraneMethodsMicroscopeMorphologic artifactsMorphologyMovementPerformancePhotobleachingPhototoxicityPreparationRegenerative MedicineResearchResearch PersonnelResourcesScienceSpeedTechniquesTemperatureTestingTimeTrainingVisualizationWorkcell analyzercell motilitycell typecellular imagingcostcytatecytotoxicitydeep learningdeep neural networkdesigndrug discoveryimprovedinnovationinterestlight transmissionlive cell imagingneural networknovel strategiesrecurrent neural networktool
项目摘要
Project Summary
Tracking living cells in video sequences is a fundamental task in many fields of science,
including biochemistry, bioinformatics, cell biology, and genetics. Manually linking cells is
extremely time-consuming and not feasible in large-scale analysis. Automatic approaches can
compute cell links by measuring how close two instances of a cell are, or how similar they look.
These techniques work well with video acquired at a relatively high frame rate, but,
unfortunately, acquiring images at high frame rates affects cells negatively. Too frequent
imaging not only causes phototoxicity, leading to experimental artifacts, but also
photobleaching, leading to the inability to measure quantities of interest over time. In addition,
during image acquisition, the environment temperature and air quality are typically less
controlled, which could also contribute to cytotoxicity. Moreover, when performing high-
throughput live-cell imaging, the lower the acquisition rate, the more cells/plates can be imaged,
and, consequently, the more experimental treatments can be applied and studied.
If reducing the acquisition rate is beneficial for all these reasons, it severely affects the accuracy
of cell tracking algorithms. To this end, we propose a new class of cell tracking approaches based
on cell movement predictions. Instead of comparing cells based on their similarity, we propose
to predict where every cell will move in the next frame. This will allow for searching the
occurrence of such cells, even if the next frame was acquired after an extended period. The
new approach will be investigated using a newly generated dataset for low frame rate cell
tracking (Aim 1). Cell displacement will be predicted by using a new Recurrent Neural Network
designed for the task (Aim 2). Cell tracking algorithms will be defined re-evaluating existing
approaches under low-frame rate constraints when using cell displacement information (Aim
3).
While current approaches require image acquisition to occur at least every 5-15 minutes, we
will investigate the feasibility of cell tracking on images acquired at intervals of up to 2 hours. If
successful, our research will allow to accurately track cells in low frame rate video sequences
without the need for specialized tools or equipment.
项目摘要
在视频序列中跟踪活细胞是许多科学领域中的基本任务,
包括生物化学、生物信息学、细胞生物学和遗传学。手动链接单元格是
非常耗时,在大规模分析中不可行。自动进近可以
通过测量一个单元的两个实例有多接近或它们看起来有多相似来计算单元链接。
这些技术对于以相对高的帧速率获取的视频工作良好,但是,
不幸的是,以高帧速率获取图像会对细胞产生负面影响。过于频繁
成像不仅引起光毒性,导致实验伪影,而且
光漂白,导致不能随时间测量感兴趣的量。此外,本发明还提供了一种方法,
在图像采集期间,环境温度和空气质量通常低于
控制,这也可能有助于细胞毒性。此外,当高性能-
通过活细胞成像,采集速率越低,可以成像的细胞/板越多,
因此,可以应用和研究更多的实验性治疗。
如果由于所有这些原因降低采集速率是有益的,则它严重影响精度
细胞追踪算法为此,我们提出了一类新的细胞跟踪方法,
细胞运动预测。我们建议,
来预测每个细胞在下一帧中的移动位置。这将允许搜索
即使下一帧是在延长的时间段之后获取的,也不会出现这种细胞。的
一种新的方法将使用新生成的低帧速率单元数据集进行研究
跟踪(目标1)。将使用一种新的递归神经网络预测单元位移
目标2(Aim 2)细胞跟踪算法将被重新定义,
当使用单元位移信息时在低帧速率约束下的方法(Aim
3)。
虽然目前的方法要求至少每5-15分钟进行一次图像采集,但我们
将研究在间隔长达2小时的图像上进行细胞跟踪的可行性。如果
如果成功,我们的研究将允许在低帧速率视频序列中准确地跟踪细胞
而不需要专门的工具或设备。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Federico Iuricich其他文献
Federico Iuricich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 20.41万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 20.41万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 20.41万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 20.41万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 20.41万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 20.41万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 20.41万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 20.41万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 20.41万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 20.41万 - 项目类别:
Research Grant