Optimization and Validation of a Cost-effective Image-Guided Automated Extracapsular Extension Detection Framework through Interpretable Machine Learning in Head and Neck Cancer
通过可解释的机器学习在头颈癌中优化和验证具有成本效益的图像引导自动囊外扩展检测框架
基本信息
- 批准号:10648372
- 负责人:
- 金额:$ 15.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAffectAlgorithmsAllyAmerican Joint Committee on CancerAnatomyAreaArtificial IntelligenceBioinformaticsBiological MarkersCancer BiologyCessation of lifeClinicClinicalClinical MarkersClinical PathologyCommunicationComputational ScienceConsumptionCraniofacial AbnormalitiesDataData ScienceData SetDentalDetectionDevelopmentDiagnosisDiagnostic Neoplasm StagingDisease ProgressionEvaluationExtracapsularExtramural ActivitiesFibrosisFundingFutureGoalsHPV analysisHead and Neck CancerHead and Neck Squamous Cell CarcinomaHealth Care CostsHuman PapillomavirusImageImage AnalysisKnowledgeLymphedemaMachine LearningMagnetic Resonance ImagingMalignant NeoplasmsManualsMedical ImagingMissionModalityModelingNational Institute of Dental and Craniofacial ResearchNeck DissectionOperative Surgical ProceduresOralOrganOutcomePET/CT scanPathologicPathological StagingPathologyPatientsPositron-Emission TomographyPostoperative PeriodPrecision therapeuticsProcessPrognosisPrognostic MarkerPublishingRadiation therapyRadiology SpecialtyResearchResearch DesignResearch Project GrantsRoleSalivarySecuritySiteStagingStaging SystemTechniquesTestingThe Cancer Imaging ArchiveTimeToxic effectTranslational ResearchTreatment-related toxicityTrustValidationWorkX-Ray Computed Tomographycancer biomarkerschemoradiationclinical diagnosticsclinical implementationcomparativecost effectivecraniofacialdeep learningdiagnostic tooldisease diagnosishead and neck cancer patienthigh riskimage guidedimprovedimproved outcomeinterestlarge datasetslymph nodesmachine learning algorithmmachine learning methodmultimodalitynovelprecision medicineprediction algorithmprogramssuccesssurvival outcometargeted treatmenttooltreatment planningtumorvalidation studies
项目摘要
Project Summary
Squamous cell carcinoma of the head and neck (SCCHN) is the 6th commonest cancer in the world,
leading to >300,000 deaths annually worldwide. The extracapsular extension (ECE) of the tumor in the
lymph nodes is a significantly high-risk feature in head and neck cancers. Several studies demonstrate
that ECE results in worse survival outcomes. Pathologic confirmation, such as neck dissection, is
currently required as the gold standard for clinical identification of ECE. However, if it is ECE positive,
postoperative chemoradiotherapy has to be considered. As a result, neck dissection followed by
chemoradiation increases the toxicity, especially late toxicity such as fibrosis, and lymphedema can get
worse due to the late toxicity. If we can detect ECE during preoperative evaluation, we can select those
patients for chemoradiation before surgery. Thus, predicting ECE becomes a piece of critical
information for clinicians planning treatment. The biggest obstacles to adopting AI/ML algorithms in the
clinic are concerns about security, reliability, and transparency. If an algorithm could be developed to
not only provide an accurate prediction of ECE (and/or clinical staging), but also to provide transparent
and clinically understandable communication of how the predictive conclusion was reached, then
clinicians would more readily adopt a tool utilizing that algorithm to be an ally. The purpose of this
proposal is to optimize and pathologically validate AI/ML approaches for prognoses and diagnoses of
ECE from medical images on head and neck cancer patients, which could be further implemented as a
tool for diagnostic assistance and precision medicine. This translational research project focuses on
filling the gap of AI/ML transparency and interpretability in the automated detection of ECE in head
and neck cancers. In addition, our interpretable ML algorithm will not require the pre-annotated lymph
node areas, which is a quite cost-effective technique by eliminating the time-consuming lymph node
annotation process. We propose the following aims: 1) Validate and interpret the image-based ECE
diagnosis model and its association with head and neck cancer anatomic organ sites and HPV status.
2) Optimize the cost-effective image-based ECE diagnosis model considering clinical markers within
pathology, PETCT, and MRI results for clinical implementation. We will validate our model based on the
dataset collected from both our team and existing data collected from The Cancer Image Archive. This
proposal aligns with the mission of Oral & Salivary Cancer Biology Program and the NIDCR Special
Interest in Supporting Dental, Oral, and Craniofacial Research Using Bioinformatic, Computational, and
Data Science Approaches (NOT-DE-20-006). This study will provide the preliminary results of our
future research on the precision treatment of high-risk head and neck cancer patients. We plan to
submit an NIDCR R01 proposal in Year 2 for the precision treatment of high-risk head and neck cancer.
项目摘要
头颈部鳞状细胞癌(SCCHN)是世界上第六常见的癌症,
导致全世界每年超过300,000人死亡。肿瘤的囊外延伸(ECE)在
淋巴结是头颈部癌症的显著高危特征。一些研究表明,
ECE会导致更差的生存结果。病理证实,如颈淋巴结清扫术,
目前作为ECE临床鉴定的金标准。但是,如果是ECE阳性,
必须考虑术后放化疗。因此,颈淋巴结清扫术后,
放化疗增加了毒性,特别是晚期毒性,如纤维化,并可导致水肿。
由于晚期毒性而恶化。如果我们能在术前评估中检测到ECE,我们可以选择那些
患者在手术前接受放化疗。因此,预测ECE成为一个关键的
为临床医生规划治疗提供信息。采用AI/ML算法的最大障碍
诊所关注的是安全性、可靠性和透明度。如果能开发出一种算法
不仅提供ECE(和/或临床分期)的准确预测,而且提供透明的
以及如何得出预测结论的临床可理解的沟通,然后
临床医生将更容易采用利用该算法的工具作为盟友。这样做的目的
建议是优化和病理学验证AI/ML方法,用于疾病的诊断和治疗。
ECE从头部和颈部癌症患者的医学图像,这可以进一步实施,作为一个
用于诊断辅助和精准医疗的工具。该转化研究项目的重点是
填补了头部ECE自动检测中AI/ML透明度和可解释性的差距
和颈部癌症。此外,我们的可解释ML算法将不需要预先注释的淋巴
淋巴结区域,这是一个非常具有成本效益的技术,通过消除耗时的淋巴结
注释过程。我们提出以下目标:1)理解和解释基于图像的欧洲经委会
诊断模式及其与头颈癌解剖器官部位和HPV状态的相关性。
2)优化基于图像的ECE诊断模型,考虑临床标志物,
用于临床实施的病理学、PETCT和MRI结果。我们将根据
从我们的团队收集的数据集和从癌症图像档案收集的现有数据。这
建议符合口腔和唾液癌生物学计划和NIDCR特别的使命
兴趣支持牙科,口腔,颅面研究使用生物信息学,计算,
数据科学方法(NOT-DE-20-006)。这项研究将提供我们的初步结果,
未来对高危头颈癌患者的精准治疗研究。我们计划
在第二年提交NIDCR R 01提案,用于高风险头颈癌的精确治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Neil Duggar其他文献
Automatic head and neck tumor segmentation through deep learning and Bayesian optimization on three-dimensional medical images
通过深度学习和贝叶斯优化对三维医学图像进行头颈部肿瘤自动分割
- DOI:
10.1016/j.compbiomed.2025.110309 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:6.300
- 作者:
Zachariah Douglas;Abdur Rahman;William Neil Duggar;Haifeng Wang - 通讯作者:
Haifeng Wang
William Neil Duggar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 15.97万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 15.97万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 15.97万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 15.97万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 15.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 15.97万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 15.97万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 15.97万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 15.97万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 15.97万 - 项目类别:
Grant-in-Aid for Early-Career Scientists