Constructing a large-scale biomedical knowledge graph using all PubMed abstracts and PMC full-text articles and its applications
利用所有PubMed摘要和PMC全文文章构建大规模生物医学知识图谱及其应用
基本信息
- 批准号:10648553
- 负责人:
- 金额:$ 14.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAddressAdverse effectsAreaAwardBiologicalCOVID-19Cell LineCreativenessDataData SetDepositionDevelopmentDiseaseHomo sapiensInformation RetrievalKnowledgeKnowledge DiscoveryLinkLiteratureManualsMethodologyMethodsModelingModernizationNamesNational Center for Advancing Translational SciencesNatural Language ProcessingOrganPatientsProbabilityProcessPubMedPublicationsPublishingReadingResearchResearch PersonnelResourcesRewardsScienceSpeedStructureSystemTextTimeTissuesUnited States National Aeronautics and Space AdministrationUnited States National Institutes of HealthVisualizationVisualization softwarebiomedical scientistcell typedeep learningdeep learning modeldrug repurposinggraph knowledge baseimprovedinformation frameworkinnovationinterestknowledge graphknowledge integrationlearning strategynovelremdesivirsearch enginetext searchingtooltrendwasting
项目摘要
Project Summary
The number of biomedical publications is growing at an accelerated speed. This ever-increasing
amount of scientific literature has made reading all the published articles regularly impossible
even for a very specific research area. The large volumes of scientific publication have also
made it very challenging for modern search engines to find relevant articles accurately for a
given query. Missing important prior studies in literature search can have serious consequences
such as wasting resources/time and/or making wrong scientific conclusions. Another unmet
challenge in literature search is that researchers often prefer finding articles where the queries
they use are part of the new discoveries, instead of the background knowledge in the articles.
The current search engines cannot distinguish between new discoveries and background
knowledge in an article. Related to this challenge is that it can be difficult to identify the latest
discoveries in a particular scientific area without reading all the recently published articles. To
address these challenges, one can convert unstructured text data into structured form, which can
then support highly accurate information retrieval, information integration and automated
knowledge discovery. A plausible approach for converting unstructured text into structured form
is to use named entity recognition (NER) and relation extraction (RE) methods to identify the
biological entities and extract their relations to construct knowledge graphs (KGs). KGs can link
concepts within existing research to allow researchers to find connections that may have been
difficult to discover without them. The LitCoin Natural Language Processing (NLP) Challenge
was recently organized by NCATS of NIH and NASA to spur innovation by rewarding the most
creative and high-impact uses of biomedical, publication-free text to create KGs. In addition to
entities and relations, the manually annotated dataset provided by LitCoin also contains the
annotations of relations being new discoveries or background knowledge. Our team has
participated in the challenge and ranked the first place. This application aims to apply the
methods we have developed for LitCoin to all PubMed abstracts and PMC full-text articles to
build the largest scale KG to date and develop applications on top of it. Specifically, we will (1)
develop a knowledge visualization and navigation tool combined with a deep learning-powered
search engine we developed previously; (2) develop advanced relation search functions to allow
knowledge discovery applications such as drug repurposing and adverse effect discovery; (3)
develop functions that allow users to search specifically the new discoveries in articles; and (4)
develop functions that return the latest discoveries in a scientific area for a given time period.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinfeng Zhang其他文献
Jinfeng Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinfeng Zhang', 18)}}的其他基金
Collaborative Research: Mathematical Framework for Biomolecules: From Protein to RNA to Chromosomes
合作研究:生物分子的数学框架:从蛋白质到RNA到染色体
- 批准号:
10189648 - 财政年份:2017
- 资助金额:
$ 14.32万 - 项目类别:
Elastic Shape Analysis for Protein Structure Alignment-New Advancement in an Old
蛋白质结构排列的弹性形状分析——旧方法的新进展
- 批准号:
8284583 - 财政年份:2012
- 资助金额:
$ 14.32万 - 项目类别:
Elastic Shape Analysis for Protein Structure Alignment-New Advancement in an Old
蛋白质结构排列的弹性形状分析——旧方法的新进展
- 批准号:
8486453 - 财政年份:2012
- 资助金额:
$ 14.32万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 14.32万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 14.32万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 14.32万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 14.32万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 14.32万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 14.32万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 14.32万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 14.32万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 14.32万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 14.32万 - 项目类别:
Research Grant