Mechanisms and functions of host organelle usurpation by intravacuolar Toxoplasma
液泡内弓形虫侵占宿主细胞器的机制和功能
基本信息
- 批准号:10649407
- 负责人:
- 金额:$ 69.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-20 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:AbbreviationsAddressAffectBindingBiochemicalBiochemical PathwayBiological AssayCell membraneCell physiologyCellsCellular biologyCholesterolClustered Regularly Interspaced Short Palindromic RepeatsComplexCytoplasmCytoplasmic GranulesDevelopmentDockingEncephalitisEndosomesFilamentFutureGenesGenetic ScreeningGenetic TechniquesGenomeGoalsGolgi ApparatusHIV/AIDSImmunocompromised HostImmunofluorescence ImmunologicIndividualInfectionInterceptInterventionLipidsMammalian CellMediatingMembraneMembrane ProteinsMicroscopicModelingMolecularNatureNutrientOrganellesParasitesPathway interactionsPatientsPenetrationPhosphatidylcholine-Sterol O-AcyltransferasePhospholipasePlasma CellsPlayProcessProtein SecretionProteinsProteomeRecyclingResourcesRoleRouteSiteSortingSphingolipidsSystemToxoplasmaToxoplasma gondiiToxoplasmosisTransmembrane TransportVacuoleVesicleWorkchemotherapydesigndifferential expressiongenetic manipulationinsightlipid transfer proteinlipid transportmicroorganismmodel organismmutantnovelobligate intracellular parasiteopportunistic pathogenpathogenprotein complexrab GTP-Binding Proteinsrecruitresponsetraffickingvesicle-associated membrane protein
项目摘要
SUMMARY
Lipids are transferred between membranes by vesicular and non-vesicular routes. Many microorganisms that
infect mammalian cells subvert the function of these host cellular lipid trafficking pathways to acquire lipids.
Toxoplasma gondii is an obligate intracellular parasite that multiplies in the cytoplasm of mammalian cells within
a self-made membrane-bound compartment – the parasitophorous vacuole (PV). The PV of T. gondii does not
fuse with host organelles. However, we showed that the parasite’s intracellular survival relies on lipids retrieved
from various mammalian organelles. For example, T. gondii scavenges cholesterol and sphingolipids from host
endocytic organelles and Golgi vesicles, respectively, which raises the perplexing question of how T. gondii can
access the lipid content of these organelles without fusion. To address this issue, our first strategy was to analyze
vesicular trafficking pathways in infected mammalian cells. We showed that Toxoplasma intercepts mammalian
Rab vesicles associated with recycling, endocytic and secretory pathways, and sequesters these vesicles into a
network of membranous tubules appended to the PV membrane. Our second approach was to analyze non-
vesicular routes of lipid transfer, specifically Membrane Contact Sites (MCS). By examining the physical
connectivity of mammalian host organelles with the PV membrane, we showed that Toxoplasma attracts host
ER tubules and lipid droplets to the PV, where they are closely apposed to the PV membrane at distances
reminiscent of inter-organelle contacts. Mammalian ER-resident Vesicle-Associated Membrane Proteins (VAP),
components of MCS, are associated with the PV membrane, suggesting the potential exploitation of Lipid
Transfer Proteins by Toxoplasma for lipid acquisition.
Based on these preliminary observations, we propose two models for lipid scavenging by Toxoplasma either
mammalian vesicular or non-vesicular lipid transport pathways. We will assess the steps of these models by
defining the molecular machineries and mechanisms involved in the interception of host vesicular pathways by
T. gondii (Aim 1), the formation of a network of membranous tubules in the PV and its role in mammalian
organelle sequestration (Aim 2) and the acquisition of lipids via non-vesicular transfer from mammalian
organelles closely associated with the PVM, possibly through MCS (Aim 3).
Completing these aims would unravel the complexity of lipid salvage processes mediated by Toxoplasma,
providing mechanistic details and identifying future targets for intervention. Indeed, T. gondii can cause fatal
encephalitis in immunocompromised individuals, and current treatment options for toxoplasmosis are limited.
Furthermore, studying the mechanisms used by Toxoplasma to usurp Rab-mediated vesicle trafficking may yield
valuable insights into how Rab GTPases coordinate membrane transport in mammalian cells. Examining the
potential strategies developed by Toxoplasma to exploit MCS may also provide important information on how
the loss of MCS affect mammalian cellular physiology and organismal function.
概括
脂质通过囊泡和非囊泡途径在膜之间转移。许多微生物
感染哺乳动物细胞会破坏这些宿主细胞脂质运输途径的功能以获得脂质。
弓形虫是一种专性细胞内寄生虫,可在哺乳动物细胞的细胞质中繁殖。
自制的膜结合区室——寄生液泡(PV)。弓形虫的 PV 不
与宿主细胞器融合。然而,我们发现寄生虫的细胞内存活依赖于回收的脂质
来自各种哺乳动物细胞器。例如,弓形虫从宿主体内清除胆固醇和鞘脂
内吞细胞器和高尔基体囊泡分别,这提出了一个令人困惑的问题:弓形虫如何
无需融合即可获取这些细胞器的脂质含量。为了解决这个问题,我们的第一个策略是分析
受感染哺乳动物细胞中的囊泡运输途径。我们证明弓形虫可以拦截哺乳动物
Rab 囊泡与回收、内吞和分泌途径相关,并将这些囊泡隔离在
附着在 PV 膜上的膜管网络。我们的第二种方法是分析非
脂质转移的囊泡途径,特别是膜接触位点(MCS)。通过检查身体
通过哺乳动物宿主细胞器与 PV 膜的连接,我们发现弓形虫会吸引宿主
ER 小管和脂滴到 PV,它们与 PV 膜相距一定距离
让人想起细胞器间的接触。哺乳动物内质网驻留的囊泡相关膜蛋白 (VAP),
MCS 的成分与 PV 膜相关,表明脂质的潜在开发利用
通过弓形虫转移蛋白质以获取脂质。
基于这些初步观察,我们提出了弓形虫清除脂质的两种模型:
哺乳动物囊泡或非囊泡脂质转运途径。我们将通过以下方式评估这些模型的步骤
定义参与拦截宿主囊泡途径的分子机器和机制
T. gondii(目标 1),PV 中膜小管网络的形成及其在哺乳动物中的作用
细胞器隔离(目标 2)和通过非囊泡转移从哺乳动物获取脂质
与 PVM 密切相关的细胞器,可能通过 MCS(目标 3)。
完成这些目标将揭示弓形虫介导的脂质回收过程的复杂性,
提供机制细节并确定未来的干预目标。事实上,弓形虫可导致致命
免疫功能低下个体的脑炎,目前弓形体病的治疗选择有限。
此外,研究弓形虫侵占 Rab 介导的囊泡运输的机制可能会产生
关于 Rab GTPases 如何协调哺乳动物细胞中的膜运输的宝贵见解。检查
弓形虫开发的利用 MCS 的潜在策略也可能提供关于如何利用 MCS 的重要信息。
MCS 的丧失会影响哺乳动物的细胞生理学和有机体功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Isabelle Coppens其他文献
Isabelle Coppens的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Isabelle Coppens', 18)}}的其他基金
Mechanisms and functions of host organelle usurpation by intravacuolar Toxoplasma
液泡内弓形虫侵占宿主细胞器的机制和功能
- 批准号:
10363370 - 财政年份:2022
- 资助金额:
$ 69.69万 - 项目类别:
Toxoplasma in the GI tract: Protective role of a parasite protease inhibitor
胃肠道中的弓形虫:寄生虫蛋白酶抑制剂的保护作用
- 批准号:
10082715 - 财政年份:2020
- 资助金额:
$ 69.69万 - 项目类别:
Toxoplasma in the GI tract: Protective role of a parasite protease inhibitor
胃肠道中的弓形虫:寄生虫蛋白酶抑制剂的保护作用
- 批准号:
10197034 - 财政年份:2020
- 资助金额:
$ 69.69万 - 项目类别:
Neutral lipid metabolism during Toxoplasma infection
弓形虫感染期间的中性脂质代谢
- 批准号:
9618357 - 财政年份:2018
- 资助金额:
$ 69.69万 - 项目类别:
Neutral lipid metabolism during Toxoplasma infection
弓形虫感染期间的中性脂质代谢
- 批准号:
9914210 - 财政年份:2018
- 资助金额:
$ 69.69万 - 项目类别:
Neutral lipid metabolism during Toxoplasma infection
弓形虫感染期间的中性脂质代谢
- 批准号:
10396511 - 财政年份:2018
- 资助金额:
$ 69.69万 - 项目类别:
Role of Autophagy in Malaria Sporozoite Differentiation
自噬在疟疾子孢子分化中的作用
- 批准号:
8871099 - 财政年份:2015
- 资助金额:
$ 69.69万 - 项目类别:
Metamorphosis and development of Plasmodium within liver cells
肝细胞内疟原虫的变态和发育
- 批准号:
8112143 - 财政年份:2010
- 资助金额:
$ 69.69万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 69.69万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 69.69万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 69.69万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 69.69万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 69.69万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 69.69万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 69.69万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 69.69万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 69.69万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 69.69万 - 项目类别:
Research Grant














{{item.name}}会员




