Statistical Methods for Integrative Analysis of Large Scale Neuroimaging Data
大规模神经影像数据综合分析的统计方法
基本信息
- 批准号:10647855
- 负责人:
- 金额:$ 36.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAffectAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisAmericanAreaBioconductorBiomedical ResearchCommunitiesComputer softwareConfidence IntervalsDataData CollectionDementiaDevelopmentDimensionsDiseaseEarly DiagnosisElderlyElectronic Health RecordGeneticGrantHeterogeneityLiteratureLongitudinal cohortMeasurementMeasuresMethodsModalityModelingModernizationNeurosciencesPatternPerformancePopulationPreventionProgressive DiseasePropertyPublic HealthResearchSamplingStatistical MethodsStatistical ModelsStatistical StudyTestingcohortcomputer studiescomputerized toolseffective therapyflexibilityhigh dimensionalityimaging biomarkerimaging modalityimprovedinnovationlongitudinal analysismicrobiome researchmorphogensmultidimensional datamultimodal datamultimodal neuroimagingmultimodalityneuroimagingnovelresilience factorsimulationstatisticstheoriestooluser friendly software
项目摘要
Abstract
Integrative analysis methods are in great needs as multimodal multi-cohort neuroimaging data rapidly emerge in
neuro science. In Alzheimer's Disease (AD) studies, many research relies on multimodal neuroimaging data to
identify key image biomarkers for the early diagnosis of AD. Despite great endeavors in data collection, there still
lacks rigorous statistical methods and efficient computational tools to properly integrate big neuroimaging data in
a statistical model and carry out inference to address practical problems. Important problems such as missing
data and adjustment for between-subject heterogeneity still remain unsolved. In this proposal, we propose to
build two integrative models, one handles multimodal data and the other handles longitudinal multi-cohort data.
They will be built under a generic M-estimation framework that covers many widely used statistical models as its
special cases. We will provide various inference tools for these models and develop efficient algorithms to solve
the M-estimation problem in presence of block missing values. In Aim 1, we propose a factor-adjusted integrative
model for multimodal data and provide a complete set of inference tools. These tools can test the significance of
one whole data modality as well as the significance of multiple linear combinations of predictors from one or more
modalities. In Aim 2, we provide a powerful computational tool to handle block missing values of multimodal data.
Such a tool does not need to perform ad-hoc imputation on missing values, but rather relies on an innovative mini-
batch gradient descent algorithm to yield a good estimator. In Aim 3, we will develop an interactive factor model
to jointly model longitudinal data coming from multiple cohorts. We show that such a model includes the standard
random effects model as a special case and is more flexible modeling the longitudinal data and accounting for the
between-subject heterogeneity. The proposed research will likely transform how we analyze neuroimaging data
and enhance our understanding of Alzheimer's Disease and its relation to public health.
摘要
随着多模态多队列神经成像数据的迅速涌现,
神经科学在阿尔茨海默病(AD)研究中,许多研究依赖于多模态神经成像数据,
识别早期诊断AD的关键图像生物标志物。尽管在数据收集方面做了很大的努力,
缺乏严格的统计方法和有效的计算工具来正确整合大量的神经成像数据,
一个统计模型,并进行推理,以解决实际问题。失踪等重要问题
受试者间异质性的数据和调整仍然没有解决。在本提案中,我们建议
建立两个综合模型,一个处理多模态数据,另一个处理纵向多队列数据。
它们将建立在一个通用的M估计框架下,该框架涵盖了许多广泛使用的统计模型,
特殊情况。我们将为这些模型提供各种推理工具,并开发有效的算法来解决
存在块缺失值的M-估计问题。在目标1中,我们提出了一个因子调整的综合
为多模态数据建模,并提供一套完整的推理工具。这些工具可以测试
一个完整的数据模式以及来自一个或多个预测因子的多个线性组合的重要性
方式。在目标2中,我们提供了一个强大的计算工具来处理多模态数据的块缺失值。
这样的工具不需要对缺失值进行特别的插补,而是依赖于一个创新的迷你模型,
批量梯度下降算法,以产生一个很好的估计。在目标3中,我们将开发一个交互因素模型
联合模拟来自多个队列的纵向数据。我们表明,这样的模型包括标准
随机效应模型作为特例,更灵活地对纵向数据进行建模,
受试者间异质性。这项研究可能会改变我们分析神经成像数据的方式。
并加深我们对阿尔茨海默病及其与公共卫生关系的认识。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-response Regression for Block-missing Multi-modal Data without Imputation
无插补的块缺失多模态数据的多响应回归
- DOI:10.5705/ss.202021.0170
- 发表时间:2024
- 期刊:
- 影响因子:1.4
- 作者:Wang, Haodong;Li, Quefeng;Liu, Yufeng
- 通讯作者:Liu, Yufeng
Adaptive Supervised Learning on Data Streams in Reproducing Kernel Hilbert Spaces with Data Sparsity Constraint.
具有数据稀疏约束的再生核希尔伯特空间中数据流的自适应监督学习。
- DOI:10.1002/sta4.514
- 发表时间:2023
- 期刊:
- 影响因子:1.7
- 作者:Wang,Haodong;Li,Quefeng;Liu,Yufeng
- 通讯作者:Liu,Yufeng
Testing generalized linear models with high-dimensional nuisance parameter.
- DOI:10.1093/biomet/asac021
- 发表时间:2022-04
- 期刊:
- 影响因子:2.7
- 作者:Jinsong Chen;Quefeng Li;H. Y. Chen
- 通讯作者:Jinsong Chen;Quefeng Li;H. Y. Chen
HIGH-DIMENSIONAL FACTOR REGRESSION FOR HETEROGENEOUS SUBPOPULATIONS.
- DOI:10.5705/ss.202020.0145
- 发表时间:2023-01
- 期刊:
- 影响因子:1.4
- 作者:Peiyao Wang;Quefeng Li;D. Shen;Yufeng Liu
- 通讯作者:Peiyao Wang;Quefeng Li;D. Shen;Yufeng Liu
Efficient computation of high-dimensional penalized generalized linear mixed models by latent factor modeling of the random effects.
- DOI:10.1093/biomtc/ujae016
- 发表时间:2023-05
- 期刊:
- 影响因子:1.9
- 作者:H. Heiling;N. Rashid;Quefeng Li;X. Peng;Jen Jen Yeh-Jen;Joseph G. Ibrahim
- 通讯作者:H. Heiling;N. Rashid;Quefeng Li;X. Peng;Jen Jen Yeh-Jen;Joseph G. Ibrahim
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Quefeng Li其他文献
Quefeng Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Quefeng Li', 18)}}的其他基金
Statistical Methods for Integrative Analysis of Large Scale Neuroimaging Data
大规模神经影像数据综合分析的统计方法
- 批准号:
10276798 - 财政年份:2021
- 资助金额:
$ 36.92万 - 项目类别:
Statistical Methods for Integrative Analysis of Large Scale Neuroimaging Data
大规模神经影像数据综合分析的统计方法
- 批准号:
10470397 - 财政年份:2021
- 资助金额:
$ 36.92万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 36.92万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 36.92万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 36.92万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 36.92万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 36.92万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 36.92万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 36.92万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 36.92万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 36.92万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 36.92万 - 项目类别:
Research Grant