Type 1 Diabetes Genetic Risk Score in TrialNet
TrialNet 中的 1 型糖尿病遗传风险评分
基本信息
- 批准号:10650137
- 负责人:
- 金额:$ 35.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdultAgeAlgorithmsAsthmaAutoantibodiesBeta CellCell physiologyCharacteristicsChildhood diabetesClinicalCommunitiesComplexDataDiabetes MellitusDiabetes preventionDiabetic KetoacidosisDiseaseEligibility DeterminationEthnic OriginFamilyFutureGeneticGenetic RiskGenotypeGoalsHaplotypesHealthHeterogeneityImmunologicsIncidenceIndividualInfrastructureInsulin-Dependent Diabetes MellitusInterventionIntervention TrialKnowledgeLinkMalignant NeoplasmsMedical ResearchMetabolicMissionModelingModificationNational Institute of Diabetes and Digestive and Kidney DiseasesNon-Insulin-Dependent Diabetes MellitusObesityParticipantPathway interactionsPatientsPersonsPhenotypePreventionPrevention strategyPrevention trialPreventivePreventive treatmentProcessPublic HealthQuality of lifeResearchResearch PersonnelRiskRisk ReductionRisk-Benefit AssessmentRoleSNP arraySelection CriteriaSocietiesTestingTherapeuticTimeUnited States National Institutes of HealthVariantarmblood glucose regulationcandidate selectioncohortdiabetes mellitus geneticsdiabetes pathogenesisdiabetes riskendocrine pancreas developmentgenetic informationgenetic resourcehigh riskimmunomodulatory therapiesimprovedimproved outcomeindividualized preventioninnovationinsulin dependent diabetes mellitus onsetislet cell antibodynext generationnon-diabeticnovelpre-clinicalprecision medicinepredicting responseprediction algorithmpredictive modelingpreventresearch in practiceresponders and non-respondersresponserisk/benefit ratiosecondary analysissuccesstool
项目摘要
TrialNet is a NIH/NIDK-sponsored network that identifies initially non-diabetic islet autoantibody-positive
relatives of patients with type 1 diabetes (T1D) and offers them trials that aim to prevent progression to clinical
disease. Accurate prediction of T1D risk is critical to assess the risk-benefit ratio of preventive trials. In
addition, tailoring the selection criteria for candidates to trials will help overcome current barriers to success,
e.g., heterogeneity of T1D, and thus, increase rates of response. Until now, the complexity of T1D genetics has
limited its use in predictive models and trial eligibility algorithms. The applicants have developed and validated
a T1D Genetic Risk Score (GRS) that, in adults with diabetes, identifies those with T1D. Furthermore, our
preliminary data on a limited subset of TrialNet participants strongly suggests that the T1D GRS improves the
current predictive model (i.e., islet autoantibodies, age and metabolic factors) for progression along the pre-
clinical stages of T1D. However, these results must be validated and optimized before the T1D GRS can be
used in research practice. The long-term goal is to predict and prevent T1D. The overall objective is to use
genetics, in combination with other factors, to accurately and timely identify individuals who will develop T1D
and will respond to preventive treatments. The central hypothesis of this application is that the T1D GRS can
improve the current prediction model for T1D and selection of candidates for intervention trials. The rationale
for this proposal is that timely prediction of T1D and accurate selection of candidates for intervention will lead
to safe and effective prevention of T1D. Guided by strong preliminary data, this hypothesis will be tested by
three specific aims: (1) Establish a validated T1D prediction model that incorporates T1D GRS, islet
autoantibody data, clinical and metabolic parameters. To achieve this aim, we will test an improved version of
the T1D GRS on the entire TrialNet observational cohort (Pathway to Prevention) to identify the best models to
predict progression overall and at each of the preclinical stages of T1D. (2) Determine the role of the T1D GRS
in selection of participants for TrialNet intervention trials. To achieve this aim, we will test whether the improved
T1D GRS, in combination with other known predictors (e.g., age), can distinguish responders and non-
responders to disease modifying therapies in TrialNet prevention and new onset trials, and develop models for
selection of candidates for intervention trials. (3) Establish a unique genetic resource that can be used by
TrialNet and wider research community for furthering our understanding of T1D. Under this aim, we will make
available to other investigators genotyping data obtained by this project on the extremely well phenotyped
TrialNet cohorts. This project is significant because it is ultimately expected to improve the outcomes of trials to
prevent T1D. This project is innovative because it seeks to shift the current practice by proposing to utilize
genetics as a novel, affordable, time-independent strategy to identify individuals at risk of T1D and select
candidates for intervention trials.
TrialNet是NIH/NIDK赞助的网络,用于识别最初非糖尿病胰岛自身抗体阳性的
1型糖尿病(T1 D)患者的亲属,并为他们提供旨在防止进展为临床的试验,
疾病准确预测T1 D风险对于评估预防性试验的风险-获益比至关重要。在
此外,根据审判情况调整候选人的甄选标准将有助于克服目前阻碍成功的障碍,
例如,在一个实施例中,T1 D异质性,并因此增加响应率。到目前为止,T1 D遗传学的复杂性
限制了其在预测模型和试验合格性算法中的使用。申请人已经开发并验证了
一个T1 D遗传风险评分(GRS),在成人糖尿病,确定那些与T1 D。而且我们的
有限的TrialNet参与者子集的初步数据强烈表明,T1 D GRS改善了
当前预测模型(即,胰岛自身抗体、年龄和代谢因素),以便沿着
T1 D的临床分期然而,在T1 D GRS可以被使用之前,这些结果必须被验证和优化。
用于研究实践。长期目标是预测和预防T1 D。总体目标是利用
遗传学,结合其他因素,以准确和及时地确定谁将发展T1 D的个人
并对预防性治疗有反应。本申请的中心假设是T1 D GRS可以
改进目前的T1 D预测模型和干预试验候选人的选择。的理由
及时预测T1 D和准确选择干预候选人将导致
安全有效地预防T1 D在强有力的初步数据的指导下,这一假设将得到检验,
三个具体目标:(1)建立一个有效的T1 D预测模型,该模型结合了T1 D GRS,胰岛
自身抗体数据、临床和代谢参数。为了实现这一目标,我们将测试一个改进的
在整个TrialNet观察性队列(预防途径)中使用T1 D GRS,以确定最佳模型,
预测T1 D的总体进展和每个临床前阶段。(2)确定T1 D GRS的作用
选择TrialNet干预试验的参与者。为了达到这个目的,我们将测试改进后的
T1 D GRS与其他已知的预测因子(例如,年龄),可以区分应答者和非应答者,
在TrialNet预防和新发试验中对疾病修饰疗法的反应者,并开发模型,
选择干预试验的候选人。(3)建立一个独特的遗传资源,
TrialNet和更广泛的研究社区,以促进我们对T1 D的理解。在这一目标下,我们将
其他研究者可获得本项目获得的关于非常好的表型的基因分型数据
TrialNet队列。该项目意义重大,因为它最终有望改善试验结果,
预防T1 D。这个项目是创新的,因为它试图改变目前的做法,建议利用
遗传学作为一种新的,负担得起的,不依赖于时间的策略,以识别T1 D风险个体,并选择
干预试验的候选人。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the road to universal screening for risk of type 1 diabetes.
- DOI:10.1016/s2213-8587(22)00166-8
- 发表时间:2022-08
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Exploring the application of deep learning methods for polygenic risk score estimation
探索深度学习方法在多基因风险评分估计中的应用
- DOI:10.1101/2023.12.14.23299972
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Squires S
- 通讯作者:Squires S
GLP-1 Receptor Agonist as Adjuvant Therapy in Type 1 Diabetes: No Apparent Benefit for Beta-Cell Function or Glycemia.
GLP-1 受体激动剂作为 1 型糖尿病的辅助治疗:对 β 细胞功能或血糖没有明显益处。
- DOI:10.1210/clinem/dgaa314
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Redondo,MariaJ;Bacha,Fida
- 通讯作者:Bacha,Fida
Decline Pattern of Beta Cell Function in LADA: Relationship to GAD Autoantibodies.
LADA 中 β 细胞功能的下降模式:与 GAD 自身抗体的关系。
- DOI:10.1210/clinem/dgaa374
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Bacha,Fida;Redondo,MariaJ
- 通讯作者:Redondo,MariaJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Jose Redondo其他文献
Maria Jose Redondo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Jose Redondo', 18)}}的其他基金
Type 1 diabetes genetic risk scores for the diagnosis of diabetes type in children of diverse racial and ethnic background
用于诊断不同种族和民族背景儿童糖尿病类型的 1 型糖尿病遗传风险评分
- 批准号:
10558569 - 财政年份:2021
- 资助金额:
$ 35.32万 - 项目类别:
Type 1 diabetes genetic risk scores for the diagnosis of diabetes type in children of diverse racial and ethnic background
用于诊断不同种族和民族背景儿童糖尿病类型的 1 型糖尿病遗传风险评分
- 批准号:
10350614 - 财政年份:2021
- 资助金额:
$ 35.32万 - 项目类别:
Type 1 Diabetes Genetic Risk Score in TrialNet
TrialNet 中的 1 型糖尿病遗传风险评分
- 批准号:
10398018 - 财政年份:2019
- 资助金额:
$ 35.32万 - 项目类别:
Type 1 Diabetes Genetic Risk Score in TrialNet
TrialNet 中的 1 型糖尿病遗传风险评分
- 批准号:
9977185 - 财政年份:2019
- 资助金额:
$ 35.32万 - 项目类别:
Texas Children's Hospital and Baylor College of Medicine TrialNet Clinical Center
德克萨斯儿童医院和贝勒医学院 TrialNet 临床中心
- 批准号:
8902136 - 财政年份:2014
- 资助金额:
$ 35.32万 - 项目类别:
Texas Children's Hospital and Baylor College of Medicine TrialNet Clinical Center
德克萨斯儿童医院和贝勒医学院 TrialNet 临床中心
- 批准号:
9434987 - 财政年份:2014
- 资助金额:
$ 35.32万 - 项目类别:
相似海外基金
Developing a Young Adult-Mediated Intervention to Increase Colorectal Cancer Screening among Rural Screening Age-Eligible Adults
制定年轻人介导的干预措施,以增加农村符合筛查年龄的成年人的结直肠癌筛查
- 批准号:
10653464 - 财政年份:2023
- 资助金额:
$ 35.32万 - 项目类别:
Doctoral Dissertation Research: Estimating adult age-at-death from the pelvis
博士论文研究:从骨盆估算成人死亡年龄
- 批准号:
2316108 - 财政年份:2023
- 资助金额:
$ 35.32万 - 项目类别:
Standard Grant
Determining age dependent factors driving COVID-19 disease severity using experimental human paediatric and adult models of SARS-CoV-2 infection
使用 SARS-CoV-2 感染的实验性人类儿童和成人模型确定导致 COVID-19 疾病严重程度的年龄依赖因素
- 批准号:
BB/V006738/1 - 财政年份:2020
- 资助金额:
$ 35.32万 - 项目类别:
Research Grant
Transplantation of Adult, Tissue-Specific RPE Stem Cells for Non-exudative Age-related macular degeneration (AMD)
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 (AMD)
- 批准号:
10294664 - 财政年份:2020
- 资助金额:
$ 35.32万 - 项目类别:
Sex differences in the effect of age on episodic memory-related brain function across the adult lifespan
年龄对成人一生中情景记忆相关脑功能影响的性别差异
- 批准号:
422882 - 财政年份:2019
- 资助金额:
$ 35.32万 - 项目类别:
Operating Grants
Modelling Age- and Sex-related Changes in Gait Coordination Strategies in a Healthy Adult Population Using Principal Component Analysis
使用主成分分析对健康成年人群步态协调策略中与年龄和性别相关的变化进行建模
- 批准号:
430871 - 财政年份:2019
- 资助金额:
$ 35.32万 - 项目类别:
Studentship Programs
Transplantation of Adult, Tissue-Specific RPE Stem Cells as Therapy for Non-exudative Age-Related Macular Degeneration AMD
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 AMD
- 批准号:
9811094 - 财政年份:2019
- 资助金额:
$ 35.32万 - 项目类别:
Study of pathogenic mechanism of age-dependent chromosome translocation in adult acute lymphoblastic leukemia
成人急性淋巴细胞白血病年龄依赖性染色体易位发病机制研究
- 批准号:
18K16103 - 财政年份:2018
- 资助金额:
$ 35.32万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Doctoral Dissertation Research: Literacy Effects on Language Acquisition and Sentence Processing in Adult L1 and School-Age Heritage Speakers of Spanish
博士论文研究:识字对西班牙语成人母语和学龄传统使用者语言习得和句子处理的影响
- 批准号:
1823881 - 财政年份:2018
- 资助金额:
$ 35.32万 - 项目类别:
Standard Grant
Adult Age-differences in Auditory Selective Attention: The Interplay of Norepinephrine and Rhythmic Neural Activity
成人听觉选择性注意的年龄差异:去甲肾上腺素与节律神经活动的相互作用
- 批准号:
369385245 - 财政年份:2017
- 资助金额:
$ 35.32万 - 项目类别:
Research Grants