Decoding Astrocyte Signaling in Neural Circuitry with Novel Computational Modeling and Analytical Tools

使用新颖的计算建模和分析工具解码神经回路中的星形胶质细胞信号传导

基本信息

  • 批准号:
    10650384
  • 负责人:
  • 金额:
    $ 68.14万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-04-14 至 2027-04-30
  • 项目状态:
    未结题

项目摘要

Astrocyte is the most abundant glia cell and significantly outnumbers neuron in the human brain. Long thought to be primarily passive cell, astrocyte has been increasingly recognized as essential player with active regulatory role in neural circuitry and behaviors. Since a single astrocyte interacts with thousands of synapses, other glial cells and blood vessels, it is well positioned to link neuronal information in different spatial-temporal dimensions to achieve higher level brain integration. Indeed, neuron-astrocyte communication at synapses regulates breathing, memory formation, motor function, and sleep, and are implicated in many neuropsychiatric disorders. All these results provide strong rationale for studying astrocyte function, which will provide unprecedented insights to our understanding how astrocytes function to regulate and protect brain and how these functions can be exploited for astrocyte-based therapeutic targets. Although there is a moderate understanding of functional significance of astrocytes, a mechanistic and comprehensive understanding of the active functional roles of astrocytes in neural circuitry and behaviors is largely lacking. One major challenge in deciphering the functional roles of astrocyte is its complex signaling patterns resided in both spatial and temporal domains. Funded by last award, we have developed an event- decomposition framework and the method AQuA (Astrocyte Quantification and Analysis) to model the complex astrocyte signaling. AQuA was considered as a paradigm shift and turning point for astrocyte analysis by multiple review papers and is now widely used by many labs in the world. With the technical advances largely enabled by BRAIN Initiative, large-scale, multiplex imaging and manipulation of multiple circuit components in astrocyte-neuron network are now feasible. The increased complexity and amount of imaging dataset demand further development of powerful computational tools beyond AQuA. The large volume whole-brain activity data and the new imaging capability of signals beyond Ca2+ require significant improvements in speed, scalability, accuracy, and flexibility. The simultaneous recording of multiple intra/extra- cellular signals calls for new modeling framework and computational methods. Thus, building on our previous success, the overarching goal of this renewal project is to further develop novel computational methods and analytical tools to decode the functional roles of astrocytes in neural circuits and behavior. We will team up with experimental biologists to prototype, validate and integrate our computational tools with wet-lab experiments across species and biological questions. We expect a team science of close collaborations between computational and experimental scientists will enable new discoveries. Ultimately, a successful outcome will significantly enhance our mechanistic and theoretical understanding of astrocyte function in neural circuitry and behaviors. These understandings will be essential to development of new therapeutic drugs and strategies, which haven’t been changed in the past 30 years for neurological and neuropsychiatric disorders.
星形胶质细胞是人脑中数量最多的神经胶质细胞,其数量远远超过神经元。一直被认为

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automated Functional Analysis of Astrocytes from Chronic Time-Lapse Calcium Imaging Data.
  • DOI:
    10.3389/fninf.2017.00048
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Wang Y;Shi G;Miller DJ;Wang Y;Wang C;Broussard G;Wang Y;Tian L;Yu G
  • 通讯作者:
    Yu G
DETECTION AND TRACKING OF MIGRATING OLIGODENDROCYTE PROGENITOR CELLS FROM IN VIVO FLUORESCENCE TIME-LAPSE IMAGING DATA.
从体内荧光延时成像数据检测和跟踪迁移的少突胶质细胞祖细胞。
Asymmetric independence modeling identifies novel gene-environment interactions.
不对称独立模型识别新的基因-环境相互作用。
  • DOI:
    10.1038/s41598-019-38983-z
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Yu,Guoqiang;Miller,DavidJ;Wu,Chiung-Ting;Hoffman,EricP;Liu,Chunyu;Herrington,DavidM;Wang,Yue
  • 通讯作者:
    Wang,Yue
SynQuant: an automatic tool to quantify synapses from microscopy images
SynQuant:一种从显微镜图像中量化突触的自动工具
  • DOI:
    10.1093/bioinformatics/btz760
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Wang, Yizhi;Wang, Congchao;Ranefall, Petter;Broussard, Gerard Joey;Wang, Yinxue;Shi, Guilai;Lyu, Boyu;Wu, Chiung-Ting;Wang, Yue;Tian, Lin
  • 通讯作者:
    Tian, Lin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Guoqiang Yu其他文献

Guoqiang Yu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Guoqiang Yu', 18)}}的其他基金

Time-resolved laser speckle contrast imaging of resting-state functional connectivity in neonatal brain
新生儿大脑静息态功能连接的时间分辨激光散斑对比成像
  • 批准号:
    10760193
  • 财政年份:
    2023
  • 资助金额:
    $ 68.14万
  • 项目类别:
Development of a Wearable Fluorescence Imaging Device for IntraoperativeIdentification of Brain Tumors
开发用于术中识别脑肿瘤的可穿戴荧光成像装置
  • 批准号:
    10697009
  • 财政年份:
    2023
  • 资助金额:
    $ 68.14万
  • 项目类别:
Integrating Astrocytes into Models of Neural Circuits Regulating Behavior
将星形胶质细胞整合到调节行为的神经回路模型中
  • 批准号:
    10294803
  • 财政年份:
    2021
  • 资助金额:
    $ 68.14万
  • 项目类别:
Data Science Core
数据科学核心
  • 批准号:
    10294802
  • 财政年份:
    2021
  • 资助金额:
    $ 68.14万
  • 项目类别:
Integrating Astrocytes into Models of Neural Circuits Regulating Behavior
将星形胶质细胞整合到调节行为的神经回路模型中
  • 批准号:
    10461225
  • 财政年份:
    2021
  • 资助金额:
    $ 68.14万
  • 项目类别:
Integrating Astrocytes into Models of Neural Circuits Regulating Behavior
将星形胶质细胞整合到调节行为的神经回路模型中
  • 批准号:
    10693168
  • 财政年份:
    2021
  • 资助金额:
    $ 68.14万
  • 项目类别:
Data Science Core
数据科学核心
  • 批准号:
    10461224
  • 财政年份:
    2021
  • 资助金额:
    $ 68.14万
  • 项目类别:
Data Science Core
数据科学核心
  • 批准号:
    10693164
  • 财政年份:
    2021
  • 资助金额:
    $ 68.14万
  • 项目类别:
High-density optical tomography of cerebral blood flow and metabolism in small animals
小动物脑血流和代谢的高密度光学断层扫描
  • 批准号:
    10323090
  • 财政年份:
    2021
  • 资助金额:
    $ 68.14万
  • 项目类别:
High-density optical tomography of cerebral blood flow and metabolism in small animals
小动物脑血流和代谢的高密度光学断层扫描
  • 批准号:
    10461939
  • 财政年份:
    2021
  • 资助金额:
    $ 68.14万
  • 项目类别:

相似海外基金

Open Access Block Award 2024 - Durham University
2024 年开放访问区块奖 - 杜伦大学
  • 批准号:
    EP/Z531480/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.14万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - Goldsmiths College
2024 年开放获取区块奖 - 金史密斯学院
  • 批准号:
    EP/Z531509/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.14万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - John Innes Centre
2024 年开放访问区块奖 - 约翰·英尼斯中心
  • 批准号:
    EP/Z53156X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.14万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - London School of Economics & Pol Sci
2024 年开放获取区块奖 - 伦敦政治经济学院
  • 批准号:
    EP/Z531625/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.14万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - Oxford Brookes University
2024 年开放获取区块奖 - 牛津布鲁克斯大学
  • 批准号:
    EP/Z531728/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.14万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - The Francis Crick Institute
2024 年开放获取区块奖 - 弗朗西斯·克里克研究所
  • 批准号:
    EP/Z531844/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.14万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - The Natural History Museum
2024 年开放访问区块奖 - 自然历史博物馆
  • 批准号:
    EP/Z531856/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.14万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - University of Brighton
2024 年开放获取区块奖 - 布莱顿大学
  • 批准号:
    EP/Z531935/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.14万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - University of Bristol
2024 年开放获取区块奖 - 布里斯托大学
  • 批准号:
    EP/Z531947/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.14万
  • 项目类别:
    Research Grant
Open Access Block Award 2024 - University of Bradford
2024 年开放获取区块奖 - 布拉德福德大学
  • 批准号:
    EP/Z531923/1
  • 财政年份:
    2024
  • 资助金额:
    $ 68.14万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了