Integrating Astrocytes into Models of Neural Circuits Regulating Behavior
将星形胶质细胞整合到调节行为的神经回路模型中
基本信息
- 批准号:10693168
- 负责人:
- 金额:$ 42.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-15 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithm DesignAnatomyAstrocytesAutomobile DrivingBehaviorBehavioralBinding SitesBiological ModelsBrainCalciumCalcium ionCellsChemicalsColorCommunitiesComplexComputer ModelsComputer SimulationComputer Vision SystemsCyclic AMPDataData AnalysesDatabasesDetectionDiseaseDisease modelDrosophila genusElementsEventFunctional disorderGene Expression ProfileGenesGenomicsGoalsImageInformation TheoryIonsKnowledgeLabelLearningLinkMathematical Model SimulationMeasurementMeasuresMechanicsMethodsMicroscopicModelingMolecularMolecular AnalysisMorphologyNeuromodulatorNeuronsNeuropeptidesNeurosciencesNeurotransmitter ReceptorNeurotransmittersNociceptionOutputPatternPopulationPropertyResolutionRoleSensorySignal TransductionSourceSpeedStatistical Data InterpretationStatistical ModelsStructureSystemTimeTranslatingVisualizationWorkcomputerized toolsexperienceexperimental studyextracellulargenetic manipulationimprovedinformation processingmathematical modelmodel developmentmultiplexed imagingneural circuitneural modelneuroregulationneurotransmissionpostsynaptic neuronspresynaptic neuronssensory inputspatial integrationspatiotemporaltooltranscription factor
项目摘要
Project Summary: Project 1 - Integrating Astrocytes into Models of Neural Circuits Regulating Behavior
Astrocytes, the most abundant cells in the brain, express various receptors of neurotransmitters and
neuromodulators and extend thousands of fine cellular leaflets, wrapping around the pre- and postsynaptic
neuronal elements. Studies over past decades have portrayed a picture where astrocytes actively respond to
both local and long projecting neuronal activities, first increasing cytosolic calcium ions (Ca2+) or other internal
signals, then influencing the concentration of extracellular factors and ions and ultimately modifying its gene
expression pattern and morphology. Thus, while neurons are unarguably a necessary player in neural circuits,
astrocytes need to be accounted and integrated into the neural circuits to achieve a more complete
understanding on how the brain works or dysfunctions. Indeed, it is appealing to consider astrocytes and
neurons as a unified circuit, since they participate in the brain information processing in complementary
manners in terms of both temporal and spatial domains. However, precisely how astrocytes temporally
and spatially integrate the molecular signals from diverse neuronal signals, particularly during behavior,
remains poorly understood. Likewise, how the diversity of astrocyte activity, in turn, influences neural circuit
function on various timescales, is unclear. The hypothesis is that a deeper and more complete understanding
on the astrocytes’ contribution to neural circuits can be achieved by systematically measuring,
manipulating, quantifying and modeling the astrocytes’ functional and structural status in the context of
controllable and quantifiable behavior tasks, which is the collective effort proposed by this U19 team.
Leveraging the improved and comprehensive measurement and manipulation of (a) various
neurotransmitters and neuromodulators, (b) multi-scale and multi-level anatomical information, (c)
important intracellular messengers, and (d) genomic signals from the efforts in the other three projects, this
project focuses on building mathematical models (Aim 1) to quantitatively interpret and predict how astrocytes
integrate various neuronal signals, and how the astrocytes regulate the neural circuit in both fast-time and
long-term scales. Considering that astrocytes have complex spatiotemporal dynamics and their morphologies
are irregular and in close contact with diverse neurons, one needs to accurately quantify the astrocyte
dynamics (Aim 2) and faithfully reconstruct the anatomy (Aim 3), to provide the necessary quantitative
description of observations and the fundamental geometric constraints to the model development.
Reciprocally, this project will identify knowledge gaps to suggest new experiments, make predictions to
generate new hypothesis and provide quantification tools to facilitate scientific discoveries for the other three
projects and more broadly for the neuroscience community.
项目概要:项目1 -将星形胶质细胞整合到调节行为的神经回路模型中
星形胶质细胞是大脑中最丰富的细胞,表达各种神经递质受体,
神经调节剂和延伸成千上万的细细胞小叶,包裹在突触前和突触后
神经元过去几十年的研究描绘了星形胶质细胞积极响应
局部和长投射神经元活动,首先增加胞质钙离子(Ca 2+)或其他内部
信号,然后影响细胞外因子和离子的浓度,并最终修饰其基因
表达模式和形态学。因此,虽然神经元是神经回路中不可或缺的参与者,
星形胶质细胞需要被计算并整合到神经回路中,以实现更完整的神经回路。
了解大脑如何工作或功能障碍。事实上,考虑星形胶质细胞和
神经元作为一个统一的电路,因为它们参与大脑信息处理的互补性
在时间和空间两个方面的方式。然而,准确地说,
并在空间上整合来自不同神经元信号的分子信号,特别是在行为期间,
仍然知之甚少。同样,星形胶质细胞活动的多样性如何反过来影响神经回路,
在不同的时间尺度上的功能,不清楚。假设是,更深入、更全面地了解
关于星形胶质细胞对神经回路的贡献可以通过系统地测量,
操纵,量化和建模星形胶质细胞的功能和结构状态的背景下,
可控制和可量化的行为任务,这是U19团队提出的集体努力。
利用经改进的全面衡量和操纵(a)各种
神经递质和神经调质,(B)多尺度和多级解剖信息,(c)
重要的细胞内信使,和(d)基因组信号的努力,在其他三个项目,这
该项目的重点是建立数学模型(目标1),以定量解释和预测星形胶质细胞如何
整合各种神经元信号,以及星形胶质细胞如何在快时和慢时调节神经回路。
长期规模。考虑到星形胶质细胞具有复杂的时空动力学和形态学,
由于星形胶质细胞是不规则的,并且与不同的神经元密切接触,因此需要准确地量化星形胶质细胞的数量。
动力学(目标2)和忠实地重建解剖结构(目标3),以提供必要的定量
观测的描述和模型开发的基本几何约束。
反过来,这个项目将确定知识差距,提出新的实验,作出预测,
产生新的假设,并提供量化工具,以促进其他三个科学发现
项目和更广泛的神经科学界。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guoqiang Yu其他文献
Guoqiang Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guoqiang Yu', 18)}}的其他基金
Time-resolved laser speckle contrast imaging of resting-state functional connectivity in neonatal brain
新生儿大脑静息态功能连接的时间分辨激光散斑对比成像
- 批准号:
10760193 - 财政年份:2023
- 资助金额:
$ 42.95万 - 项目类别:
Development of a Wearable Fluorescence Imaging Device for IntraoperativeIdentification of Brain Tumors
开发用于术中识别脑肿瘤的可穿戴荧光成像装置
- 批准号:
10697009 - 财政年份:2023
- 资助金额:
$ 42.95万 - 项目类别:
Integrating Astrocytes into Models of Neural Circuits Regulating Behavior
将星形胶质细胞整合到调节行为的神经回路模型中
- 批准号:
10294803 - 财政年份:2021
- 资助金额:
$ 42.95万 - 项目类别:
Integrating Astrocytes into Models of Neural Circuits Regulating Behavior
将星形胶质细胞整合到调节行为的神经回路模型中
- 批准号:
10461225 - 财政年份:2021
- 资助金额:
$ 42.95万 - 项目类别:
High-density optical tomography of cerebral blood flow and metabolism in small animals
小动物脑血流和代谢的高密度光学断层扫描
- 批准号:
10323090 - 财政年份:2021
- 资助金额:
$ 42.95万 - 项目类别:
High-density optical tomography of cerebral blood flow and metabolism in small animals
小动物脑血流和代谢的高密度光学断层扫描
- 批准号:
10461939 - 财政年份:2021
- 资助金额:
$ 42.95万 - 项目类别:
Continuous and Longitudinal Monitoring of Cerebral Blood Flow and Metabolism in Freely Moving Rodents
自由移动啮齿动物脑血流和代谢的连续和纵向监测
- 批准号:
10204279 - 财政年份:2020
- 资助金额:
$ 42.95万 - 项目类别:
相似海外基金
REU Site: Algorithm Design --- Theory and Engineering
REU网站:算法设计---理论与工程
- 批准号:
2349179 - 财政年份:2024
- 资助金额:
$ 42.95万 - 项目类别:
Standard Grant
REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
- 批准号:
2349567 - 财政年份:2024
- 资助金额:
$ 42.95万 - 项目类别:
Standard Grant
Product structures theorems and unified methods of algorithm design for geometrically constructed graphs
几何构造图的乘积结构定理和算法设计统一方法
- 批准号:
23K10982 - 财政年份:2023
- 资助金额:
$ 42.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algorithm Design in Strategic and Uncertain Environments
战略和不确定环境中的算法设计
- 批准号:
RGPIN-2016-03885 - 财政年份:2022
- 资助金额:
$ 42.95万 - 项目类别:
Discovery Grants Program - Individual
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
- 批准号:
DGECR-2022-00401 - 财政年份:2022
- 资助金额:
$ 42.95万 - 项目类别:
Discovery Launch Supplement
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
- 批准号:
RGPIN-2022-04570 - 财政年份:2022
- 资助金额:
$ 42.95万 - 项目类别:
Discovery Grants Program - Individual
Control Theory and Algorithm Design for Nonlinear Systems Based on Finite Dimensionality of Holonomic Functions
基于完整函数有限维的非线性系统控制理论与算法设计
- 批准号:
22K17855 - 财政年份:2022
- 资助金额:
$ 42.95万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Scalable Algorithm Design for Unbiased Estimation via Couplings of Markov Chain Monte Carlo Methods
通过马尔可夫链蒙特卡罗方法耦合进行无偏估计的可扩展算法设计
- 批准号:
2210849 - 财政年份:2022
- 资助金额:
$ 42.95万 - 项目类别:
Continuing Grant
Modern mathematical models of big data-driven problems in biological sequence analysis with applications to efficient algorithm design
生物序列分析中大数据驱动问题的现代数学模型及其在高效算法设计中的应用
- 批准号:
569312-2022 - 财政年份:2022
- 资助金额:
$ 42.95万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral