Hydrogels for human beta cell survival, function and evasion of immune rejection
用于人类β细胞存活、功能和逃避免疫排斥的水凝胶
基本信息
- 批准号:10512947
- 负责人:
- 金额:$ 82.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AdultAffectAnimal ModelAutoimmune DiseasesBeta CellBiocompatible MaterialsBlood GlucoseBody WeightC-PeptideCadaverCell SurvivalCell TransplantationCell physiologyCellsChildChronicClinicalClinical TrialsCollagenComplications of Diabetes MellitusDevelopmentDevicesDiseaseEngineeringEngraftmentFastingFormulationFutureGelGlucose tolerance testGraft SurvivalHealth Care CostsHomologous TransplantationHumanHydrogelsHypoglycemiaImmuneImmune EvasionImmune systemImmunocompetentImmunocompromised HostImmunologicsImmunologyImmunosuppressionInjectableInsulinInsulin-Dependent Diabetes MellitusIslets of Langerhans TransplantationLeadModelingMonitorMusPatientsPilot ProjectsPreventionRiskSCID Beige MouseSignal TransductionSiteSourceStructure of beta Cell of isletTechnologyTranslationsTransplantationVascular Endothelial Growth FactorsVascularizationWorkbasecell replacement therapyclinical translationdelivery vehiclediabetes riskdiabeticeuglycemiaglycemic controlgraft functionhuman pluripotent stem cellhuman stem cellshumanized mouseimmunoregulationimprovedinnovationisletmouse modelnephrotoxicitynonhuman primatepreventresponsestem cell biologysubcutaneous
项目摘要
PROJECT SUMMARY
Type 1 diabetes (T1D) is an autoimmune disease in which the insulin-producing β-cells of the pancreas are
destroyed. T1D affects 3 million children and adults in the US with healthcare costs exceeding $15 billion.
Standard therapy with exogenous insulin is burdensome, associated with a significant danger of hypoglycemia,
and only partially efficacious in preventing long-term complications. Transplantation of allogeneic islets from
cadaveric donors in conjunction with chronic immunosuppression has been recently shown to be effective in
restoring euglycemia in clinical trials. However, the long-term future of cell replacement therapy for T1D requires
a reliable and replenishable β-cell source and elimination of the need for chronic immunosuppression. β-cells
derived from human pluripotent stem cells (SC-β cells) represent a transformative, unlimited source of insulin-
producing cells for the treatment of T1D. Despite advances in engineering functional insulin-producing SC-β
cells, significant barriers related to long-term engraftment and function without chronic immunosuppression
hinder the clinical translation of these promising cells. Furthermore, the use of encapsulation devices to protect
transplanted cells has not been successful in large animal models due to fibrotic responses and lack of direct
vascularization. Our objective is to engineer advanced biomaterial delivery technologies to (i) enhance
vascularization, survival, and engraftment of SC-β cells and (ii) protect them from rejection by the immune system
without the need for encapsulation or chronic immunosuppression. We hypothesize that synthetic hydrogels with
controlled presentation of vasculogenic and immunomodulatory signals will provide an injectable delivery vehicle
that directs SC-β cell survival, engraftment, and function without chronic immunosuppression or encapsulation.
Aim 1: Engineer injectable VEGF-delivering hydrogels to promote vascularization, survival, and function of SC-
β cells transplanted in the subcutaneous space of diabetic, immunocompromised mice. Aim 2: Evaluate our SA-
FasL-microgel technology to promote SC-β cell immune acceptance and function in diabetic, immunocompetent
humanized mice without chronic immunosuppression. Aim 3: Examine the ability of VEGF/SA-FasL
hydrogels to enhance SC-β cell survival and function in diabetic nonhuman primates with no or reduced chronic
immunosuppression in a pilot study. This highly significant and innovative strategy is fundamentally different
from ongoing work in the field in terms of engineering advanced injectable biomaterials that promote SC-β cell
vascularization, local immune acceptance, survival, and function without encapsulation in devices or systemic
immunosuppression. Furthermore, the focus on humanized murine and nonhuman primate models will
accelerate the development of an effective and broadly applicable cure for T1D.
项目总结
1型糖尿病(T1D)是一种自身免疫性疾病,胰腺中产生胰岛素的β细胞
被毁了。T1D影响了美国300万儿童和成人,医疗成本超过150亿美元。
外源性胰岛素的标准治疗是繁重的,与低血糖的重大危险有关,
在预防长期并发症方面只有部分有效。同种异体胰岛移植的实验研究
身体供体联合慢性免疫抑制最近被证明是有效的
在临床试验中恢复正常血糖。然而,T1D细胞替代疗法的长期未来需要
一种可靠和可补充的β细胞来源,消除了慢性免疫抑制的需要。β细胞
来自人类多能干细胞(SC-β细胞)的细胞代表着一种变革性的、无限的胰岛素来源-
产生治疗T1D的细胞。尽管工程化功能性胰岛素产生SC-β取得了进展
细胞,与长期植入和功能相关的重要屏障,而不存在慢性免疫抑制
阻碍这些有希望的细胞的临床翻译。此外,使用封装设备来保护
移植细胞在大型动物模型中尚未成功,原因是纤维化反应和缺乏直接的
血管形成。我们的目标是设计先进的生物材料输送技术,以(I)增强
SC-β细胞的血管化、存活和植入,以及(Ii)保护它们免受免疫系统的排斥
不需要包埋或慢性免疫抑制。我们假设合成水凝胶与
血管生成和免疫调节信号的受控呈现将提供一种可注射的递送载体
它可以在没有慢性免疫抑制或包膜的情况下指导SC-β细胞的存活、植入和功能。
目的1:设计可注射的血管内皮生长因子输送水凝胶,以促进血管形成、存活和干细胞功能
将β细胞移植到糖尿病免疫受损小鼠的皮下空间。目标2:评估我们的SA-
Fas L-微凝胶技术促进糖尿病患者SC-β细胞免疫接受性和免疫功能
人源化小鼠,没有慢性免疫抑制。目的3:检测血管内皮生长因子/SA-FasL的能力
水凝胶增强糖尿病非人类灵长类动物SC-β细胞的存活和功能
一项初步研究中的免疫抑制。这一极具意义和创新的战略从根本上是不同的
在设计先进的可注射生物材料方面正在进行的工作中促进SC-β细胞
血管形成、局部免疫接受、存活和功能,无需在设备或系统中进行封装
免疫抑制。此外,对人源化的小鼠和非人类灵长类动物模型的关注将
加快开发有效且广泛适用的治疗T1D的药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andres J Garcia其他文献
Andres J Garcia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andres J Garcia', 18)}}的其他基金
Hydrogels for human beta cell survival, function and evasion of immune rejection
用于人类β细胞存活、功能和逃避免疫排斥的水凝胶
- 批准号:
10705265 - 财政年份:2022
- 资助金额:
$ 82.23万 - 项目类别:
Hydrogels for human beta cell survival, function and evasion of immune rejection
用于人类β细胞存活、功能和逃避免疫排斥的水凝胶
- 批准号:
10865870 - 财政年份:2022
- 资助金额:
$ 82.23万 - 项目类别:
BIOMATERIALS FOR STEM CELL DERIVED BETA CELL TRANSPLANTATION
用于干细胞衍生的 β 细胞移植的生物材料
- 批准号:
10517827 - 财政年份:2021
- 资助金额:
$ 82.23万 - 项目类别:
BIOMATERIALS FOR STEM CELL-DERIVED BETA CELL TRANSPLANTATION
用于干细胞衍生的 β 细胞移植的生物材料
- 批准号:
10684716 - 财政年份:2021
- 资助金额:
$ 82.23万 - 项目类别:
BIOMATERIALS FOR STEM CELL-DERIVED BETA CELL TRANSPLANTATION
用于干细胞衍生的 β 细胞移植的生物材料
- 批准号:
10306891 - 财政年份:2021
- 资助金额:
$ 82.23万 - 项目类别:
BIOMATERIALS FOR STEM CELL-DERIVED BETA CELL TRANSPLANTATION
用于干细胞衍生的 β 细胞移植的生物材料
- 批准号:
10557968 - 财政年份:2021
- 资助金额:
$ 82.23万 - 项目类别:
BIOMATERIALS FOR STEM CELL-DERIVED BETA CELL TRANSPLANTATION
用于干细胞衍生的 β 细胞移植的生物材料
- 批准号:
10905940 - 财政年份:2021
- 资助金额:
$ 82.23万 - 项目类别:
Targeted delivery of immunomodulatory biologics for induction of immune privilege to allogeneic pancreatic islet grafts
靶向递送免疫调节生物制剂以诱导同种异体胰岛移植物的免疫特权
- 批准号:
10227259 - 财政年份:2020
- 资助金额:
$ 82.23万 - 项目类别:
Hydrogels for delivery of muscle stem cells to diaphragm
用于将肌肉干细胞递送至隔膜的水凝胶
- 批准号:
10281444 - 财政年份:2020
- 资助金额:
$ 82.23万 - 项目类别:
Targeted delivery of immunomodulatory biologics for induction of immune privilege to allogeneic pancreatic islet grafts
靶向递送免疫调节生物制剂以诱导同种异体胰岛移植物的免疫特权
- 批准号:
10163042 - 财政年份:2020
- 资助金额:
$ 82.23万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 82.23万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 82.23万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 82.23万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 82.23万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 82.23万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 82.23万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 82.23万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 82.23万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 82.23万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 82.23万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




