Develop manganese-containing porous scaffolds with vasculature-like channels for potential applications in craniofacial bone regeneration
开发具有类血管通道的含锰多孔支架,在颅面骨再生中具有潜在应用
基本信息
- 批准号:10514798
- 负责人:
- 金额:$ 44.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAddressAffectAllograftingAnatomyArchitectureAutologous TransplantationBiocompatible MaterialsBiologicalBiological TestingBiomedical ResearchBlood VesselsBone RegenerationBone SubstitutesBone TissueCellsCeramicsChemicalsComplexCongenital DisordersDataDefectFloridaFoundationsGoalsGrowthGrowth FactorHispanic-serving InstitutionImplantIn VitroInfiltrationInstructionIonsMalignant NeoplasmsManganeseMechanicsMediatingModelingMusNatural regenerationOsteogenesisPropertyPublicationsShapesStructureSurvival RateTechniquesTestingTissue EngineeringTissuesTranslatingTransplantationTraumaUniversitiesVascularizationWorkangiogenesisbiomaterial compatibilitybioscaffoldcalcium phosphatecell motilitycraniofacial bonecraniofacial repairdesignexperimental studygraduate studentimplantationin vivonanomaterialsnanoparticlerecruitregenerativeregenerative approachrepairedscaffoldside effectstem cell differentiationstem cell therapystem cellssubcutaneoussuccesstissue regenerationtissue repairtissue stem cellstricalcium phosphateundergraduate student
项目摘要
Project Summary
As bone substitutes for autografts and allografts, synthetic porous scaffolds have limitations in the repair
of critical-sized craniofacial bone defects due to insufficient vascularization and bone formation. To
address these issues, in this project we propose to construct a new vasculature-like channels internal
structure and add manganese dioxide (MnO2) hollow nanoparticles in a porous beta-tricalcium phosphate
(b-TCP) scaffold to facilitate new blood vessel growth and stimulate osteogenesis. This strategy
harnesses the new mimicking vasculature-like channels to stimulate cell recruitment and promote the
invasion of new blood vessels, and utilizes the new inorganic Mn-containing nanoparticles to promote
osteogenesis. Specifically, a template-casting technique combining 3D printing will be employed to
develop vasculature-like channeled porous MnO2/b-TCP scaffolds. The concentrations of MnO2
nanoparticles in the b-TCP, the optimal channel size of the vasculature-like channels, and the in vivo cell
infiltration, tissue biocompatibility, and vascularization of the new scaffold will be fully investigated. To
achieve this goal, we will pursue the following three specific aims. Aim 1: Investigate the effect of MnO2
nanoparticles on the mechanical, physicochemical, and biological properties of porous b-TCP scaffolds.
Aim 2: Investigate the effect of 3D channels on the mechanical, physicochemical, and biological
properties of porous MnO2/b-TCP scaffolds. Aim 3: Examine the tissue biocompatibility, pro-angiogenic,
cell-instructive functions of the channeled scaffold in a mouse subcutaneous model. After we complete
this three-years proposed project, we will generate a new scaffold with mimicking structures and
osteogenesis-stimulating components for craniofacial bone tissue regeneration. This proposed project
will be the foundation for our long-term goal to translate this synthetic porous scaffold for the regeneration
of large craniofacial bone defects.
项目摘要
人工合成多孔支架作为自体骨和异体骨的替代材料,在修复过程中存在一定的局限性
由于血管化和骨形成不足导致的临界尺寸颅面骨缺损。到
为了解决这些问题,在这个项目中,我们建议构建一个新的血管样通道,
在多孔β-磷酸三钙中构筑并添加二氧化锰(MnO 2)空心纳米粒子
(b-TCP)支架以促进新血管生长并刺激骨生成。这一战略
利用新的模拟血管样通道来刺激细胞募集,
新血管的侵入,并利用新的无机含锰纳米粒子,以促进
成骨具体而言,将采用结合3D打印的模板铸造技术,
开发血管状通道的多孔MnO2/b-TCP支架。MnO2浓度
b-TCP中的纳米颗粒,血管样通道的最佳通道尺寸,以及体内细胞
将充分研究新支架的浸润、组织生物相容性和血管化。到
为达致这个目标,我们会致力达致以下三个具体目标。目的1:研究MnO2的作用
纳米颗粒对多孔b-TCP支架的机械、物理化学和生物学特性的影响。
目的2:研究3D通道对机械、物理化学和生物学的影响
多孔MnO2/b-TCP支架的性能。目的3:检查组织生物相容性,促血管生成,
在小鼠皮下模型中,通道支架的细胞指导功能。完成后
这个为期三年的项目,我们将产生一个新的支架与模仿结构,
促进颅面骨组织再生的成骨刺激成分。本拟议项目
将是我们长期目标的基础,将这种合成多孔支架用于再生,
巨大的颅面骨缺损
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yunqing Kang其他文献
Yunqing Kang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yunqing Kang', 18)}}的其他基金
Development of multifunctional biodegradable drug-loaded polymer stents for inoperable esophageal malignancies
开发用于不能手术的食管恶性肿瘤的多功能可生物降解载药聚合物支架
- 批准号:
9023017 - 财政年份:2016
- 资助金额:
$ 44.4万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 44.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 44.4万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 44.4万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 44.4万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 44.4万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 44.4万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 44.4万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 44.4万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 44.4万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 44.4万 - 项目类别:
Standard Grant














{{item.name}}会员




